Hepatology encompasses various aspects,such as metabolic-associated fatty liver disease,viral hepatitis,alcoholic liver disease,liver cirrhosis,liver failure,liver tumors,and liver transplantation.The global epidemiol...Hepatology encompasses various aspects,such as metabolic-associated fatty liver disease,viral hepatitis,alcoholic liver disease,liver cirrhosis,liver failure,liver tumors,and liver transplantation.The global epidemiological situation of liver diseases is grave,posing a substantial threat to human health and quality of life.Characterized by high incidence and mortality rates,liver diseases have emerged as a prominent global public health concern.In recent years,the rapid advan-cement of artificial intelligence(AI),deep learning,and radiomics has transfor-med medical research and clinical practice,demonstrating considerable potential in hepatology.AI is capable of automatically detecting abnormal cells in liver tissue sections,enhancing the accu-racy and efficiency of pathological diagnosis.Deep learning models are able to extract features from computed tomography and magnetic resonance imaging images to facilitate liver disease classification.Machine learning models are capable of integrating clinical data to forecast disease progression and treatment responses,thus supporting clinical decision-making for personalized medicine.Through the analysis of imaging data,laboratory results,and genomic information,AI can assist in diagnosis,forecast disease progression,and optimize treatment plans,thereby improving clinical outcomes for liver disease patients.This minireview intends to comprehensively summarize the state-of-the-art theories and applications of AI in hepatology,explore the opportunities and challenges it presents in clinical practice,basic research,and translational medicine,and propose future research directions to guide the advancement of hepatology and ultimately improve patient outcomes.展开更多
Intervertebral disc degeneration is a leading cause of lower back pain and is characterized by pathological processes such as nucleus pulposus cell apoptosis,extracellular matrix imbalance,and annulus fibrosus rupture...Intervertebral disc degeneration is a leading cause of lower back pain and is characterized by pathological processes such as nucleus pulposus cell apoptosis,extracellular matrix imbalance,and annulus fibrosus rupture.These pathological changes result in disc height loss and functional decline,potentially leading to disc herniation.This comprehensive review aimed to address the current challenges in intervertebral disc degeneration treatment by evaluating the regenerative potential of stem cell-based therapies,with a particular focus on emerging technologies such as exosomes and gene vector systems.Through mechanisms such as differentiation,paracrine effects,and immunomodulation,stem cells facilitate extracellular matrix repair and reduce nucleus pulposus cell apoptosis.Despite recent advancements,clinical applications are hindered by challenges such as hypoxic disc environments and immune rejection.By analyzing recent preclinical and clinical findings,this review provided insights into optimizing stem cell therapy to overcome these obstacles and highlighted future directions in the field.展开更多
Anion exchange membrane fuel cells(AEMFCs),regarded as a promising alternative to proton exchange membrane fuel cells(PEMFCs),have garnered increasing attention because of their cost-effectiveness by using the non-nob...Anion exchange membrane fuel cells(AEMFCs),regarded as a promising alternative to proton exchange membrane fuel cells(PEMFCs),have garnered increasing attention because of their cost-effectiveness by using the non-noble metal catalysts and hydrocarbon-based ionomers as membrane[1].However,despite of extensive researches on non-noble metal catalysts such as Co[2].展开更多
To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based sim...To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.展开更多
Objective Patients with severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection frequently develop central nervous system damage,yet the mechanisms driving this pathology remain unclear.This study investi...Objective Patients with severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection frequently develop central nervous system damage,yet the mechanisms driving this pathology remain unclear.This study investigated the primary pathways and key factors underlying brain tissue damage induced by the SARS-CoV-2 beta variant(lineage B.1.351).Methods K18-hACE2 and C57BL/6 mice were intranasally infected with the SARS-CoV-2 beta variant.Viral replication,pathological phenotypes,and brain transcriptomes were analyzed.Gene Ontology(GO)analysis was performed to identify altered pathways.Expression changes of host genes were verified using reverse transcription-quantitative polymerase chain reaction and Western blot.Results Pathological alterations were observed in the lungs of both mouse strains.However,only K18-hACE2 mice exhibited elevated viral RNA loads and infectious titers in the brain at 3 days post-infection,accompanied by neuropathological injury and weight loss.GO analysis of infected K18-hACE2 brain tissue revealed significant dysregulation of genes associated with innate immunity and antiviral defense responses,including type I interferons,pro-inflammatory cytokines,Toll-like receptor signaling components,and interferon-stimulated genes.Neuroinflammation was evident,alongside activation of apoptotic and pyroptotic pathways.Furthermore,altered neural cell marker expression suggested viral-induced neuroglial activation,resulting in caspase 4 and lipocalin 2 release and disruption of neuronal molecular networks.Conclusion These findings elucidate mechanisms of neuropathogenicity associated with the SARS-CoV-2 beta variant and highlight therapeutic targets to mitigate COVID-19-related neurological dysfunction.展开更多
This paper investigates the active traveling wave vibration control of an elastic supported rotating porous aluminium conical shell(CS)under impact loading.Piezoelectric smart materials in the form of micro fiber comp...This paper investigates the active traveling wave vibration control of an elastic supported rotating porous aluminium conical shell(CS)under impact loading.Piezoelectric smart materials in the form of micro fiber composites(MFCs)are used as actuators and sensors.To this end,a metal pore truncated CS with MFCs attached to its surface is considered.Adding artificial virtual springs at two edges of the truncated CS achieves various elastic supported boundaries by changing the spring stiffness.Based on the first-order shear deformation theory(FSDT),minimum energy principle,and artificial virtual spring technology,the theoretical formulations considering the electromechanical coupling are derived.The comparison of the natural frequency of the present results with the natural frequencies reported in previous literature evaluates the accuracy of the present approach.To study the vibration control,the integral quadrature method in conjunction with the differential quadrature approximation in the length direction is used to discretize the partial differential dynamical system to form a set of ordinary differential equations.With the aid of the velocity negative feedback method,both the time history and the input control voltage on the actuator are demonstrated to present the effects of velocity feedback gain,pore distribution type,semi-vertex angle,impact loading,and rotational angular velocity on the traveling wave vibration control.展开更多
OBJECTIVE: To evaluate the effects that inhalation of the combustion products of the traditional Chinese herb Aiye(Folium Artemisiae Argyi) has on the central nervous system.METHODS: Forty Kunming mice(half male) were...OBJECTIVE: To evaluate the effects that inhalation of the combustion products of the traditional Chinese herb Aiye(Folium Artemisiae Argyi) has on the central nervous system.METHODS: Forty Kunming mice(half male) were randomly assigned(n = 10/group) to a control group(C) or one of three moxa smoke concentration groups(% opacity): low(L1; 0.4%), medium(M1; 2%), and high(H1; 15%). Mice in the latter three groups were exposed to moxa smoke in a dynamic gas exposure cabinet for 20 min per day for7 days. Mice in control group were placed in the same cabinet without any intervention. For the sleep experiments, another 50 mice were divided into five groups of 10 mice each: a saline-injected control group, L1 + pentobarbital sodium(PS)-injected group, M1+PS group, H1(15%)+PS group,and a positive control group(10 mg/kg, chlorpromazine, p.o.). The weight, general activities, locomotor activities, rotarod performance, sleep duration,and sleeping rate induced by a subthreshold dose of pentobarbital sodium were recorded in the mice,and the composition of moxa smoke was analyzed using headspace gas chromatography(GC-HS).RESULTS: A low concentration of smoke significantly decreased the frequency of locomotor activities and the time for which the mice remaining on the rotarod; however, a high smoke concentration significantly prolonged the pentobarbital-induced sleeping time and sleeping rate.CONCLUSION: The concentration-dependent relaxing effects of moxa smoke on the Central Nervous System(CNS) were confirmed. Moreover, GC-HS analysis showed that the component present in the highest concentration in moxa smoke was eucalyp-tol, an essential oil well recognized for its soothing effects on the CNS. This may therefore be accountable for the sedative effects of moxa smoke.展开更多
Phase engineering of molybdenum disulfide(MoS_(2))can achieve phase transformation from the semiconducting phase(2H-MoS_(2))with poor conductivity to the metallic phase(1T-MoS_(2))with superior electrochemical propert...Phase engineering of molybdenum disulfide(MoS_(2))can achieve phase transformation from the semiconducting phase(2H-MoS_(2))with poor conductivity to the metallic phase(1T-MoS_(2))with superior electrochemical properties.Therefore,it is desirable to prepare high concentration 1T-MoS_(2)by simple and facile methods.In this work,MoS_(2)with high concentration of 1T phase is successfully prepared by one-pot hydrothermal synthesis through the synergistic effect of HNO_(3)and CH_(3)CH_(2)OH,which is stable for more than half of a year.The as-synthesized MoS_(2)shows high capacitance of 392Fg^(-1)at 1A g^(-1)as used for supercapacitors electrodes,and displays excellent capacitance retention(83%after 10,000 cycles).Asymmetric supercapacitors(ASCs)devices assembled by the as-synthesized MoS_(2)and MnO_(2)on carbon cloths,exhibit high energy and power densities(0.194 m Wh cm^(-2)and 13.466 mW cm^(-2)).These results shed a light to realize 1T phase MoS_(2)through the synergistic effect in hydrothermal processing.展开更多
The inferior conductivity and drastic volume expansion of silicon still remain the bottleneck in achieving high energy density Lithium-ion Batteries(LIBs).The design of the three-dimensional structure of electrodes by...The inferior conductivity and drastic volume expansion of silicon still remain the bottleneck in achieving high energy density Lithium-ion Batteries(LIBs).The design of the three-dimensional structure of electrodes by compositing silicon and carbon materials has been employed to tackle the above challenges,however,the exorbitant costs and the uncertainty of the conductive structure persist,leaving ample room for improvement.Herein,silicon nanoparticles were innovatively composited with eco-friendly biochar sourced from cotton to fabricate a 3D globally consecutive conductive network.The network serves a dual purpose:enhancing overall electrode conductivity and serving as a scaffold to maintain electrode integrity.The conductivity of the network was further augmented by introducing P-doping at the optimum doping temperature of 350℃.Unlike the local conductive sites formed by the mere mixing of silicon and conductive agents,the consecutive network can affirm the improvement of the conductivity at a macro level.Moreover,first-principle calculations further validated that the rapid diffusion of Li^(+)is attributed to the tailored electronic microstructure and charge rearrangement of the fiber.The prepared consecutive conductive Si@P-doped carbonized cotton fiber anode outperforms the inconsecutive Si@Graphite anode in both cycling performance(capacity retention of 1777.15 mAh g^(-1) vs.682.56 mAh g^(-1) after 150 cycles at 0.3 C)and rate performance(1244.24 mAh g^(-1) vs.370.28 mAh g^(-1) at 2.0 C).The findings of this study may open up new avenues for the development of globally interconnected conductive networks in Si-based anodes,thereby enabling the fabrication of high-performance LIBs.展开更多
Corona Virus Disease 2019(COVID-19)has brought the new challenges to scientific research.Isodon suzhouensis has good anti-inflammatory and antioxidant stress effects,which is considered as a potential treatment for CO...Corona Virus Disease 2019(COVID-19)has brought the new challenges to scientific research.Isodon suzhouensis has good anti-inflammatory and antioxidant stress effects,which is considered as a potential treatment for COVID-19.The possibility for the treatment of COVID-19 with I.suzhouensis and its potential mechanism of action were explored by employing molecular docking and network pharmacology.Network pharmacology and molecular docking were used to screen drug targets,and lipopolysaccharide(LPS)induced RAW264.7 and NR8383 cells inflammation model was used for experimental verification.Collectively a total of 209 possible linkages against 18 chemical components from I.suzhouensis and 1194 COVID-19 related targets were selected.Among these,164 common targets were obtained from the intersection of I.suzhouensis and COVID-19.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enriched 582 function targets and 87 target proteins pathways,respectively.The results from molecular docking studies revealed that rutin,vitexin,isoquercitrin and quercetin had significant binding ability with 3 chymotrypsin like protease(3CLpro)and angiotensin converting enzyme 2(ACE2).In vitro studies showed that I.suzhouensis extract(ISE)may inhibit the activation of PI3K/Akt pathway and the expression level of downstream proinflammatory factors by inhibiting the activation of epidermal growth factor receptor(EGFR)in RAW264.7 cells induced by LPS.In addition,ISE was able to inhibit the activation of TLR4/NF-κB signaling pathway in NR8383 cells exposed to LPS.Overall,the network pharmacology and in vitro studies conclude that active components from I.suzhouensis have strong therapeutic potential against COVID-19 through multi-target,multi-pathway dimensions and can be a promising candidate against COVID-19.展开更多
TheⅣ-Ⅵcompound GeTe is considered as a promising alternative to the toxic PbTe for high-efficiency mid-temperature thermoelectric applications.However,pristine GeTe suffers from a high concentration of Ge vacancies,...TheⅣ-Ⅵcompound GeTe is considered as a promising alternative to the toxic PbTe for high-efficiency mid-temperature thermoelectric applications.However,pristine GeTe suffers from a high concentration of Ge vacancies,resulting in an excessively high hole concentration(>1×10^(21)cm^(-3)),which greatly limits its thermoelectric enhancement.To address this issue,CuBiTe_(2)alloying is introduced to increase the formation energy of Ge vacancies in GeTe,thereby inhibiting the high carrier concentration.The carrier scattering caused by the electronegativity difference between different elements is suppressed due to the similar electronegativity of Cu and Ge atoms.A relatively high hole mobility is obtained,which ultimately leads to a high power factor.Additionally,by introducing Se as an alloying element at the anionic site in GeTe,dense point defects with mass/strainfield fluctuations are induced.This contributes to the strengthening of phonon scattering,thereby reducing the lattice thermal conductivity from 1.44 W·m^(-1)·K^(-1)for pristine GeTe to 0.28 W·m^(-1)·K^(-1)for Ge_(0.95)Cu_(0.05)Bi_(0.05)Te_(0.9)Se_(0.15)compound at 623 K.展开更多
目的探究双歧杆菌四联活菌辅助治疗在乙型肝炎肝硬化失代偿期(cirrhosis portal hypertension due to hepatitis B virus,CP-HBV)患者中的效果。方法选取2020年10月—2023年9月郑州人民医院收治的CP-HBV患者68例,根据治疗方法分为对照...目的探究双歧杆菌四联活菌辅助治疗在乙型肝炎肝硬化失代偿期(cirrhosis portal hypertension due to hepatitis B virus,CP-HBV)患者中的效果。方法选取2020年10月—2023年9月郑州人民医院收治的CP-HBV患者68例,根据治疗方法分为对照组、联合组,其中予以恩替卡韦的33例为对照组,予以恩替卡韦+双歧杆菌四联活菌的35例为联合组。比较两组不良反应发生率、治疗前后肝功能[总胆红素(total bilirubin,TBIL)、谷丙转氨酶(alanine aminotransferase,ALT)、γ-谷氨酰转移酶(γ-glutamyltransferase,GGT)、谷草转氨酶(aspartate aminotransferase,AST)]、肠黏膜屏障功能[尿乳果糖/甘露醇(rine lactulose/mannitol,L/M)比值、二胺氧化酶(diamine oxidase,DAO)、内毒素(endotoxin,LPS)]、肠道菌群(乳酸杆菌、大肠埃希菌、双歧杆菌、酵母菌)及血清炎症因子[可溶性细胞间黏附分子-1(soluble intercellular adhesion molecule-1,sICAM-1)、白介素-1(interleukin,IL-1)、Tol样受体4(Tol-like receptor 4,TLR-4)、肿瘤坏死因子-α(tumor necrosis factor,TNF-α)]水平。结果联合组治疗后TBIL、ALT、GGT、AST水平低于对照组,差异具有统计学意义(P<0.05);联合组治疗后L/M、DAO、LPS水平低于对照组(P<0.05);联合组治疗后乳酸杆菌、双歧杆菌水平升高幅度大于对照组,大肠埃希菌、酵母菌水平降低幅度大于对照组,差异具有统计学意义(P<0.05);联合组治疗后sICAM-1、IL-1、TLR-4、TNF-α水平低于对照组(P<0.05);两组不良反应发生率相比,无显著差异(P>0.05)。结论双歧杆菌四联活菌辅助治疗CP-HBV,不仅可改善肝功能、修复肠黏膜屏障功能,还可调节肠道菌群,减轻体内炎症反应,且安全可靠。展开更多
文摘Hepatology encompasses various aspects,such as metabolic-associated fatty liver disease,viral hepatitis,alcoholic liver disease,liver cirrhosis,liver failure,liver tumors,and liver transplantation.The global epidemiological situation of liver diseases is grave,posing a substantial threat to human health and quality of life.Characterized by high incidence and mortality rates,liver diseases have emerged as a prominent global public health concern.In recent years,the rapid advan-cement of artificial intelligence(AI),deep learning,and radiomics has transfor-med medical research and clinical practice,demonstrating considerable potential in hepatology.AI is capable of automatically detecting abnormal cells in liver tissue sections,enhancing the accu-racy and efficiency of pathological diagnosis.Deep learning models are able to extract features from computed tomography and magnetic resonance imaging images to facilitate liver disease classification.Machine learning models are capable of integrating clinical data to forecast disease progression and treatment responses,thus supporting clinical decision-making for personalized medicine.Through the analysis of imaging data,laboratory results,and genomic information,AI can assist in diagnosis,forecast disease progression,and optimize treatment plans,thereby improving clinical outcomes for liver disease patients.This minireview intends to comprehensively summarize the state-of-the-art theories and applications of AI in hepatology,explore the opportunities and challenges it presents in clinical practice,basic research,and translational medicine,and propose future research directions to guide the advancement of hepatology and ultimately improve patient outcomes.
基金Supported by Henan Province Key Research and Development Program,No.231111311000Henan Provincial Science and Technology Research Project,No.232102310411+2 种基金Henan Province Medical Science and Technology Key Project,No.LHGJ20220566 and No.LHGJ20240365Henan Province Medical Education Research Project,No.WJLX2023079Zhengzhou Medical and Health Technology Innovation Guidance Program,No.2024YLZDJH022.
文摘Intervertebral disc degeneration is a leading cause of lower back pain and is characterized by pathological processes such as nucleus pulposus cell apoptosis,extracellular matrix imbalance,and annulus fibrosus rupture.These pathological changes result in disc height loss and functional decline,potentially leading to disc herniation.This comprehensive review aimed to address the current challenges in intervertebral disc degeneration treatment by evaluating the regenerative potential of stem cell-based therapies,with a particular focus on emerging technologies such as exosomes and gene vector systems.Through mechanisms such as differentiation,paracrine effects,and immunomodulation,stem cells facilitate extracellular matrix repair and reduce nucleus pulposus cell apoptosis.Despite recent advancements,clinical applications are hindered by challenges such as hypoxic disc environments and immune rejection.By analyzing recent preclinical and clinical findings,this review provided insights into optimizing stem cell therapy to overcome these obstacles and highlighted future directions in the field.
基金supported by the National Natural Science Foundation of China(Nos.22162014 and U24A2044).
文摘Anion exchange membrane fuel cells(AEMFCs),regarded as a promising alternative to proton exchange membrane fuel cells(PEMFCs),have garnered increasing attention because of their cost-effectiveness by using the non-noble metal catalysts and hydrocarbon-based ionomers as membrane[1].However,despite of extensive researches on non-noble metal catalysts such as Co[2].
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52271317 and 52071149)the Fundamental Research Funds for the Central Universities(HUST:2019kfy XJJS007)。
文摘To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.
基金supported by the National Key Research and Development Program of China(2023YFC3041500).
文摘Objective Patients with severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection frequently develop central nervous system damage,yet the mechanisms driving this pathology remain unclear.This study investigated the primary pathways and key factors underlying brain tissue damage induced by the SARS-CoV-2 beta variant(lineage B.1.351).Methods K18-hACE2 and C57BL/6 mice were intranasally infected with the SARS-CoV-2 beta variant.Viral replication,pathological phenotypes,and brain transcriptomes were analyzed.Gene Ontology(GO)analysis was performed to identify altered pathways.Expression changes of host genes were verified using reverse transcription-quantitative polymerase chain reaction and Western blot.Results Pathological alterations were observed in the lungs of both mouse strains.However,only K18-hACE2 mice exhibited elevated viral RNA loads and infectious titers in the brain at 3 days post-infection,accompanied by neuropathological injury and weight loss.GO analysis of infected K18-hACE2 brain tissue revealed significant dysregulation of genes associated with innate immunity and antiviral defense responses,including type I interferons,pro-inflammatory cytokines,Toll-like receptor signaling components,and interferon-stimulated genes.Neuroinflammation was evident,alongside activation of apoptotic and pyroptotic pathways.Furthermore,altered neural cell marker expression suggested viral-induced neuroglial activation,resulting in caspase 4 and lipocalin 2 release and disruption of neuronal molecular networks.Conclusion These findings elucidate mechanisms of neuropathogenicity associated with the SARS-CoV-2 beta variant and highlight therapeutic targets to mitigate COVID-19-related neurological dysfunction.
基金Supported by the National Natural Science Foundation of China(Nos.12272056 and 11832002)。
文摘This paper investigates the active traveling wave vibration control of an elastic supported rotating porous aluminium conical shell(CS)under impact loading.Piezoelectric smart materials in the form of micro fiber composites(MFCs)are used as actuators and sensors.To this end,a metal pore truncated CS with MFCs attached to its surface is considered.Adding artificial virtual springs at two edges of the truncated CS achieves various elastic supported boundaries by changing the spring stiffness.Based on the first-order shear deformation theory(FSDT),minimum energy principle,and artificial virtual spring technology,the theoretical formulations considering the electromechanical coupling are derived.The comparison of the natural frequency of the present results with the natural frequencies reported in previous literature evaluates the accuracy of the present approach.To study the vibration control,the integral quadrature method in conjunction with the differential quadrature approximation in the length direction is used to discretize the partial differential dynamical system to form a set of ordinary differential equations.With the aid of the velocity negative feedback method,both the time history and the input control voltage on the actuator are demonstrated to present the effects of velocity feedback gain,pore distribution type,semi-vertex angle,impact loading,and rotational angular velocity on the traveling wave vibration control.
基金Supported by the National Natural Science Foundation of China:Effect of Moxibustion on"Longevity Gene"SIRT1 Regulation in Aged Mice(No.81403449)NSFC Project:Effect of Moxibustion and its Therapeutic Factors on Mitochondrial Energy Metabolism and Apotosis Pathyway in APP/PS1Transgenic Alzheimer's Disease Mouse Model(No.81574068)National Program on Key Basic Research Project(973 Program):the Study of Components and Mechanisms of Artemisia and the Product and Moxibustion and Safety Evaluation(No.2009CB522906)
文摘OBJECTIVE: To evaluate the effects that inhalation of the combustion products of the traditional Chinese herb Aiye(Folium Artemisiae Argyi) has on the central nervous system.METHODS: Forty Kunming mice(half male) were randomly assigned(n = 10/group) to a control group(C) or one of three moxa smoke concentration groups(% opacity): low(L1; 0.4%), medium(M1; 2%), and high(H1; 15%). Mice in the latter three groups were exposed to moxa smoke in a dynamic gas exposure cabinet for 20 min per day for7 days. Mice in control group were placed in the same cabinet without any intervention. For the sleep experiments, another 50 mice were divided into five groups of 10 mice each: a saline-injected control group, L1 + pentobarbital sodium(PS)-injected group, M1+PS group, H1(15%)+PS group,and a positive control group(10 mg/kg, chlorpromazine, p.o.). The weight, general activities, locomotor activities, rotarod performance, sleep duration,and sleeping rate induced by a subthreshold dose of pentobarbital sodium were recorded in the mice,and the composition of moxa smoke was analyzed using headspace gas chromatography(GC-HS).RESULTS: A low concentration of smoke significantly decreased the frequency of locomotor activities and the time for which the mice remaining on the rotarod; however, a high smoke concentration significantly prolonged the pentobarbital-induced sleeping time and sleeping rate.CONCLUSION: The concentration-dependent relaxing effects of moxa smoke on the Central Nervous System(CNS) were confirmed. Moreover, GC-HS analysis showed that the component present in the highest concentration in moxa smoke was eucalyp-tol, an essential oil well recognized for its soothing effects on the CNS. This may therefore be accountable for the sedative effects of moxa smoke.
基金supported by the National Key R&D Program of China(Nos.2016YFA0401801)Natural Science Foundation of Anhui Province(No.1608085QE107)the Users with Excellence Program of Hefei Science Center CAS(No.2021HSC-UE009)。
文摘Phase engineering of molybdenum disulfide(MoS_(2))can achieve phase transformation from the semiconducting phase(2H-MoS_(2))with poor conductivity to the metallic phase(1T-MoS_(2))with superior electrochemical properties.Therefore,it is desirable to prepare high concentration 1T-MoS_(2)by simple and facile methods.In this work,MoS_(2)with high concentration of 1T phase is successfully prepared by one-pot hydrothermal synthesis through the synergistic effect of HNO_(3)and CH_(3)CH_(2)OH,which is stable for more than half of a year.The as-synthesized MoS_(2)shows high capacitance of 392Fg^(-1)at 1A g^(-1)as used for supercapacitors electrodes,and displays excellent capacitance retention(83%after 10,000 cycles).Asymmetric supercapacitors(ASCs)devices assembled by the as-synthesized MoS_(2)and MnO_(2)on carbon cloths,exhibit high energy and power densities(0.194 m Wh cm^(-2)and 13.466 mW cm^(-2)).These results shed a light to realize 1T phase MoS_(2)through the synergistic effect in hydrothermal processing.
基金supported by the National Natural Science Foundation of China(No.12205252)the Basic Public Welfare Re-search Special Project of Zhejiang Province(No.LZY22B040001)+4 种基金the Quzhou Science and Technology Plan Project(No.2022K39)Science and Technology Project of Quzhou Research Institute,Zhejiang University(Nos.IZQ2021KJ2032,IZQ2022KJ3014,and IZQ2022KJ3002)Independent scientific Research Project of Quzhou Research Institute,Zhejiang University(No.IZQ2021RCZX007)New“115 talents”Project ofQuzhou,National Nature Science Foundation of China(No.52172244)Fundamental Research Funds for the Central University(No.226202200053).
文摘The inferior conductivity and drastic volume expansion of silicon still remain the bottleneck in achieving high energy density Lithium-ion Batteries(LIBs).The design of the three-dimensional structure of electrodes by compositing silicon and carbon materials has been employed to tackle the above challenges,however,the exorbitant costs and the uncertainty of the conductive structure persist,leaving ample room for improvement.Herein,silicon nanoparticles were innovatively composited with eco-friendly biochar sourced from cotton to fabricate a 3D globally consecutive conductive network.The network serves a dual purpose:enhancing overall electrode conductivity and serving as a scaffold to maintain electrode integrity.The conductivity of the network was further augmented by introducing P-doping at the optimum doping temperature of 350℃.Unlike the local conductive sites formed by the mere mixing of silicon and conductive agents,the consecutive network can affirm the improvement of the conductivity at a macro level.Moreover,first-principle calculations further validated that the rapid diffusion of Li^(+)is attributed to the tailored electronic microstructure and charge rearrangement of the fiber.The prepared consecutive conductive Si@P-doped carbonized cotton fiber anode outperforms the inconsecutive Si@Graphite anode in both cycling performance(capacity retention of 1777.15 mAh g^(-1) vs.682.56 mAh g^(-1) after 150 cycles at 0.3 C)and rate performance(1244.24 mAh g^(-1) vs.370.28 mAh g^(-1) at 2.0 C).The findings of this study may open up new avenues for the development of globally interconnected conductive networks in Si-based anodes,thereby enabling the fabrication of high-performance LIBs.
基金supported by the National Natural Science Foundation of China(82170481)Anhui Natural Science Foundation(2008085J39 and 2108085MH314)+2 种基金Excellent Top-notch Talents Training Program of Anhui Universities(gxbjZD2022073)Anhui Province Innovation Team of Authentic Medicinal Materials Development and High Value Utilization(2022AH010080)Suzhou University Joint Cultivation Postgraduate Research Innovation Fund Project(2023KYCX04).
文摘Corona Virus Disease 2019(COVID-19)has brought the new challenges to scientific research.Isodon suzhouensis has good anti-inflammatory and antioxidant stress effects,which is considered as a potential treatment for COVID-19.The possibility for the treatment of COVID-19 with I.suzhouensis and its potential mechanism of action were explored by employing molecular docking and network pharmacology.Network pharmacology and molecular docking were used to screen drug targets,and lipopolysaccharide(LPS)induced RAW264.7 and NR8383 cells inflammation model was used for experimental verification.Collectively a total of 209 possible linkages against 18 chemical components from I.suzhouensis and 1194 COVID-19 related targets were selected.Among these,164 common targets were obtained from the intersection of I.suzhouensis and COVID-19.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enriched 582 function targets and 87 target proteins pathways,respectively.The results from molecular docking studies revealed that rutin,vitexin,isoquercitrin and quercetin had significant binding ability with 3 chymotrypsin like protease(3CLpro)and angiotensin converting enzyme 2(ACE2).In vitro studies showed that I.suzhouensis extract(ISE)may inhibit the activation of PI3K/Akt pathway and the expression level of downstream proinflammatory factors by inhibiting the activation of epidermal growth factor receptor(EGFR)in RAW264.7 cells induced by LPS.In addition,ISE was able to inhibit the activation of TLR4/NF-κB signaling pathway in NR8383 cells exposed to LPS.Overall,the network pharmacology and in vitro studies conclude that active components from I.suzhouensis have strong therapeutic potential against COVID-19 through multi-target,multi-pathway dimensions and can be a promising candidate against COVID-19.
基金financially supported by the National Key Research and Development Program of China(No.2018YFA0702100)National Natural Science Foundation of China(No.U21A2054)the support from Key Discipline of Materials Science and Engineering,Bureau of Education of Guangzhou(No.202255464)。
文摘TheⅣ-Ⅵcompound GeTe is considered as a promising alternative to the toxic PbTe for high-efficiency mid-temperature thermoelectric applications.However,pristine GeTe suffers from a high concentration of Ge vacancies,resulting in an excessively high hole concentration(>1×10^(21)cm^(-3)),which greatly limits its thermoelectric enhancement.To address this issue,CuBiTe_(2)alloying is introduced to increase the formation energy of Ge vacancies in GeTe,thereby inhibiting the high carrier concentration.The carrier scattering caused by the electronegativity difference between different elements is suppressed due to the similar electronegativity of Cu and Ge atoms.A relatively high hole mobility is obtained,which ultimately leads to a high power factor.Additionally,by introducing Se as an alloying element at the anionic site in GeTe,dense point defects with mass/strainfield fluctuations are induced.This contributes to the strengthening of phonon scattering,thereby reducing the lattice thermal conductivity from 1.44 W·m^(-1)·K^(-1)for pristine GeTe to 0.28 W·m^(-1)·K^(-1)for Ge_(0.95)Cu_(0.05)Bi_(0.05)Te_(0.9)Se_(0.15)compound at 623 K.
文摘目的:探究自体富血小板血浆(Platelet rich plasma,PRP)注射联合自体表皮移植及白芍总苷治疗稳定期白癜风的疗效及对美学效果的影响。方法:回顾性分析2020年6月-2023年1月衡水市第二人民医院收治的205例稳定期白癜风患者的临床资料,按治疗方法及入院时间的不同分成对照组(100例,2020年6月-2021年9月)和实验组(105例,2021年10月-2023年1月)。对照组予以自体表皮移植术联合白芍总苷治疗,在此基础上实验组予以PRP注射治疗,时长为3个月。比较两组疗效、白斑改善情况[白癜风面积评分指数(Vitiligo area score index,VASI)、色素积分]、皮肤病生活质量指数(Dermatology life quality index,DLQI)、美学效果、免疫功能(CD4^(+)、CD8^(+)、CD4^(+)/CD8^(+))、氧化应激指标[超氧化物歧化酶(SOD)、丙二醛(MDA)、过氧化氢酶(CAT)]、不良反应发生率和复发率的差异。结果:治疗后,实验组的总有效率高于对照组(P<0.05);治疗3个月及随访6个月后,两组DLQI评分均较治疗前降低,且实验组低于对照组(P<0.05),随访6个月后实验组的美学效果评分高于对照组(P<0.05);两组CD4^(+)、CD4^(+)/CD8^(+)、SOD、CAT水平均较治疗前升高,CD8^(+)、MDA水平均较治疗前降低,且实验组变化幅度优于对照组(P<0.05);两组VASI评分均治疗前降低,色素沉着积分较治疗前升高,且实验组变化幅度优于对照组(P<0.05);治疗期间两组不良反应发生率差异无统计学意义(P>0.05);随访6个月后实验组的疾病复发率低于对照组(P<0.05)。结论:PRP注射、自体表皮移植术联合白芍总苷治疗稳定性期白癜风患者的疗效显著,能有效提高免疫功能,减轻氧化应激反应,促进白斑消退,改善生活质量及美学效果,降低疾病复发率,且安全性高。