BACKGROUND Ras-related protein Rab24,which belongs to the small GTPase family,plays a crucial role in regulating intracellular protein trafficking.Dysregulation of Rab24 has been recently identified in hepatocellular ...BACKGROUND Ras-related protein Rab24,which belongs to the small GTPase family,plays a crucial role in regulating intracellular protein trafficking.Dysregulation of Rab24 has been recently identified in hepatocellular carcinoma(HCC).However,its clinical significance and tumor related effects remain to be further clarified.AIM To explore the expression pattern of Rab24 and its role in HCC progression.METHODS The expression profile of Rab24 was tested in HCC tissues together with adjacent tissues from transcriptional,mRNA,and protein levels.The prognostic role of Rab24 in HCC was assessed by univariate and multivariate analyses.Clinical outcomes were evaluated by the Kaplan-Meier analysis and log-rank test.The effect of Rab24 on cell proliferation was tested through cellular experiments and xenograft experiments.RESULTS Rab24 expression was elevated in HCC tissues compared to adjacent liver tissues.High expression of Rab24 was significantly associated with larger tumor size and advanced tumor stage.Moreover,HCC patients with high Rab24 expression showed poorer overall survival,and Rab24 was identified as an independent prognosis factor according to multivariate analysis.By using overexpression and shRNA knockdown strategies in HCC cell lines,we found that Rab24 can promote HCC proliferation.Finally,we validated that silencing Rab24 significantly attenuated xenograft growth in vivo.CONCLUSION Our study demonstrated that high expression of Rab24 was significantly correlated with poorer prognosis of HCC patients,indicating the potential of Rab24 as a novel clinical biomarker and therapeutic target.展开更多
Robotic belt grinding has emerged as a finishing process in recent years for machining components with high surface finish and flexibility.The surface machining consistency,however,is difficult to be guaranteed in suc...Robotic belt grinding has emerged as a finishing process in recent years for machining components with high surface finish and flexibility.The surface machining consistency,however,is difficult to be guaranteed in such a process.To overcome this problem,a method of hybrid force-position control combined with PI/PD control is proposed to be applied in robotic abrasive belt grinding of complex geometries.Voltage signals are firstly obtained and transformed to force information with signal conditioning methods.Secondly,zero drift and gravity compensation algorithms are presented to calibrate the F/T transducer which is installed on the robot end-effector.Next,a force control strategy combining hybrid force-position control with PI/PD control is introduced to be employed in robotic abrasive belt grinding operations where the force control law is applied to the Z direction of the tool frame and the positon control law is used in the X direction of the tool frame.Then,the accuracy of the F/T transducer and the robotic force control system is analyzed to ensure the stability and reliability of force control in the robotic grinding process.Finally,two typical cases on robotic belt grinding of a test workpiece and an aero-engine blade are conducted to validate the practicality and effectiveness of the force control technology proposed.展开更多
This study investigated the effects of superheated steam(SS)treatment at different temperatures(120℃,150℃,180℃)on the physicochemical properties of broken rice flour and the quality of broken rice cakes.SS treatmen...This study investigated the effects of superheated steam(SS)treatment at different temperatures(120℃,150℃,180℃)on the physicochemical properties of broken rice flour and the quality of broken rice cakes.SS treatment at 120℃ significantly enhanced the moisture content of broken rice flour(P<0.05).In contrast,treatments at 150℃ and 180℃ caused decrease of moisture content,amylose leaching,and reduction of damaged starch content.After SS treatment,the pasting properties of broken rice flour increased,along with the rising of storage modulus and loss modulus.The proportion of short chains(DP 6-12)in amylopectin increased from 29.42%to 34.80%(P<0.05),which could delay starch retrogradation.Compared with untreated ones,the SS-150 broken rice cakes showed a significantly higher specific volume(2.96 mL/g,P<0.05),more uniform cell structure,and lower hardness(1.66 N)and chewiness(10.22 mJ).After 7 days of storage,cakes from SS-treated rice flour(150℃ and 180℃)had significantly reduced hardness and chewiness.The study demonstrated that SS treatment could improve the properties of broken rice flour and enhance the quality of broken rice cakes,especially at 150℃ and 180℃.This study presents a method for improving the quality of broken rice flour and rice cakes using superheated steam treatment,addressing challenges related to poor flour characteristics and suboptimal cake quality.The findings offer technical and theoretical support for enhancing rice cake production,contributing to the comprehensive utilization of rice resources.展开更多
Aconitum(Ranunculaceae)has a long-standing history in traditional Chinese medicine(TCM),where it has been widely used to treat conditions such as rheumatoid arthritis(RA),myocardial infarction,and heart failure.Howeve...Aconitum(Ranunculaceae)has a long-standing history in traditional Chinese medicine(TCM),where it has been widely used to treat conditions such as rheumatoid arthritis(RA),myocardial infarction,and heart failure.However,the potency of Aconitum alkaloids,the primary active components of Aconitum,also confers substantial toxicity.Therefore,assessing the efficacy and toxicity of these Aconitum alkaloids is crucial for ensuring clinical effectiveness and safety.Metabolomics,a quantitative method for analyzing low-molecular-weight metabolites involved in metabolic pathways,provides a comprehensive view of the metabolic state across multiple systems in vivo.This approach has become a vital investigative tool for facilitating the evaluation of their efficacy and toxicity,identifying potential sensitive biomarkers,and offering a promising avenue for elucidating the pharmacological and toxicological mechanisms underlying TCM.This review focuses on the applications of metabolomics in pharmacological and toxicological studies of Aconitum alkaloids in recent years and highlights the significant role of metabolomics in exploring compatibility detoxification and the mechanisms of TCM processing,aiming to identify more viable methods for characterizing toxic medicinal plants.展开更多
C-glycosides have been demonstrated to have distinct biological functions and therefore display notable pharmacological values,whereas the access to the versatile structural analog of C-glycosides is a significant cha...C-glycosides have been demonstrated to have distinct biological functions and therefore display notable pharmacological values,whereas the access to the versatile structural analog of C-glycosides is a significant challenge to their advancement as therapeutic agents.We herein disclose a facial and efficient catalytic C-glycosylation using a glycosyl ortho-2,2-dimethoxycarbony lcyclopropylbenzoate(CCBz)as the donor.The trailblazing glycosyl donor can be simply activated by a non-toxic and easily accessible Sc(Ⅲ)catalyst.The ring-strain release of the incorporated donor-acceptor cyclopropane(DAC)serves as a powerful driving force of the glycosylation system.The adaptability of current methods to different types of donors and acceptors was exemplified.Examinations on the synthetic potential were done with the one-pot synthesis of free C-indolyl-glycosides and the subsequent biological studies,unlocking the antibacterial potentials of these compounds.展开更多
Skeletal muscles are essential parts of the human motor system and are mainly regulated by motor units(MUs)through the nervous system.As a widely used noninvasive measurement of MUs,surface EMG cannot obtain in-depth ...Skeletal muscles are essential parts of the human motor system and are mainly regulated by motor units(MUs)through the nervous system.As a widely used noninvasive measurement of MUs,surface EMG cannot obtain in-depth spatial information on MUs.Ultrafast ultrasound(UUS)can measure the mechanical response of MUs from muscle morphology with image sequences.This research proposed a blind source separation method with enhanced interpretability for decoding ultrasound image sequences to obtain the mechanical response of MUs.In particular,the spatiotemporal data were decomposed using non-negative matrix factorization(NMF).Then,the spatial components’multiple probability density functions were obtained using a parametric self-fitting function.The proposed algorithm,called NMF-stICA,was validated on ten groups of computational simulation datasets.The accuracies of the obtained spatial and temporal components were 87.26%±2.18%and 85.13%±1.83%,respectively.Further,a dynamic ultrasound phantom experiment was performed,and all the potential spatial components were correctly decoded.Additionally,isometric contraction human experiments were conducted on the biceps muscle of eight subjects with simultaneous acquisition of UUS and intramuscular electromyography(iEMG).The results showed that the rate of agreement was 58.71%,comparing the decoded components with the firing pattern of iEMG.The proposed decoding method can get precise spatial position and the firing pattern of the MUs in the skeletal muscle.This might help to study the neuromechanical properties of MUs and localize disease in specific muscle regions.展开更多
Bone marrow-derived mesenchymal stem cells differentiate into neurons under the induction of Schwann cells. However, key microRNAs and related pathways for differentiation remain unclear. This study screened and ident...Bone marrow-derived mesenchymal stem cells differentiate into neurons under the induction of Schwann cells. However, key microRNAs and related pathways for differentiation remain unclear. This study screened and identified differentially expressed microRNAs in bone marrow- derived mesenchymal stem cells induced by Schwann cell-conditioned medium, and explored targets and related pathways involved in their differentiation into neuronal-like cells. Primary bone marrow-derived mesenchymal stem cells were isolated from femoral and tibial bones, while primary Schwann cells were isolated from bilateral saphenous nerves. Bone marrow-derived mesenchymal stem cells were cultured in unconditioned (control group) and Schwann cell-conditioned medium (bone marrow-derived mesenchymal stem cell + Schwann cell group). Neuronal differentiation of bone marrow-derived mesenchymal stem cells induced by Schwann cell-conditioned medium was observed by time-lapse imaging. Upon induction, the morphology of bone marrow-derived mesencaymal stem cells changed into a neural shape with neurites. Results of quantitative reverse transcription-polymerase chain reaction revealed that nestin mRNA expression was upregulated from 1 to 3 days and downregulated from 3 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. Compared with the control group, microtubule-associated protein 2 mRNA expression gradually increased from 1 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. After 7 days of induction, microRNA analysis iden:ified 83 significantly differentially expressed microRNAs between the two groups. Gene Ontology analysis indicated enrichment of microRNA target genes for neuronal projection development, regulation of axonogenesis, and positive regulation of cell proliferation. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that Hippo, Wnt, transforming growth factor-beta, and Hedgehog signaling pathv/ays were potentially associated with neural differentiation of bone marrow-derived mesenchymal stem cells. This study, which carried out successful microRNA analysis of neuronal-like cells differentiated from bone marrow-derived mesenchymal stem cells by Schwann cell induction, revealed key microRNAs and pathways involved in neural differentiation of bone marrow-derived mesenchymal stem cells. All protocols were approved by the Animal Ethics Committee of Institute of Radiation Medicine, Chinese Academy of Medical Sciences on March 12, 2017 (approval number: DWLI-20170311).展开更多
A two-dimensional rectangular solenoid transmitting coil is proposed to address the problem that the three-dimensional receiving coil occupies excessive space inside the capsule robot.The transmitting coil consists of...A two-dimensional rectangular solenoid transmitting coil is proposed to address the problem that the three-dimensional receiving coil occupies excessive space inside the capsule robot.The transmitting coil consists of two pairs of rectangular solenoid coils distributed radially along the human body.By changing the direction of current flow,it can generate a two-dimensional magnetic field covering the whole central plane.Firstly,the working mechanism of the wireless power transfer system is introduced,and then the spatial electromagnetic field generated by the transmitting coil is analyzed through both mathematical calculations and finite element simulations.Finally,an experimental platform is built to determine the optimal resonant frequency of the system and validate its feasibility based on the power transfer efficiency and the receiving power.The experimental results demonstrate that when the receiving coil is located at the center of the coil pair,the receiving power is 1416 mW and the power transfer efficiency is 3.96%.Additionally,when the receiving coil operates in the central plane,it can receive sufficient energy regardless of the orientation.展开更多
文摘BACKGROUND Ras-related protein Rab24,which belongs to the small GTPase family,plays a crucial role in regulating intracellular protein trafficking.Dysregulation of Rab24 has been recently identified in hepatocellular carcinoma(HCC).However,its clinical significance and tumor related effects remain to be further clarified.AIM To explore the expression pattern of Rab24 and its role in HCC progression.METHODS The expression profile of Rab24 was tested in HCC tissues together with adjacent tissues from transcriptional,mRNA,and protein levels.The prognostic role of Rab24 in HCC was assessed by univariate and multivariate analyses.Clinical outcomes were evaluated by the Kaplan-Meier analysis and log-rank test.The effect of Rab24 on cell proliferation was tested through cellular experiments and xenograft experiments.RESULTS Rab24 expression was elevated in HCC tissues compared to adjacent liver tissues.High expression of Rab24 was significantly associated with larger tumor size and advanced tumor stage.Moreover,HCC patients with high Rab24 expression showed poorer overall survival,and Rab24 was identified as an independent prognosis factor according to multivariate analysis.By using overexpression and shRNA knockdown strategies in HCC cell lines,we found that Rab24 can promote HCC proliferation.Finally,we validated that silencing Rab24 significantly attenuated xenograft growth in vivo.CONCLUSION Our study demonstrated that high expression of Rab24 was significantly correlated with poorer prognosis of HCC patients,indicating the potential of Rab24 as a novel clinical biomarker and therapeutic target.
基金National Nature Science Foundation of China(Nos.51675394and 51375196)National Key Research and Development Program of China(No.2017YFB1303404)+2 种基金State Key Laboratory of Digital Manufacturing Equipment and Technology of China(No.DMETKF2018018)Fundamental Research Funds for the Central Universities of China(No.2017II33GX)the Key R&D Program of Jiangsu Province(No.BE2015005)
文摘Robotic belt grinding has emerged as a finishing process in recent years for machining components with high surface finish and flexibility.The surface machining consistency,however,is difficult to be guaranteed in such a process.To overcome this problem,a method of hybrid force-position control combined with PI/PD control is proposed to be applied in robotic abrasive belt grinding of complex geometries.Voltage signals are firstly obtained and transformed to force information with signal conditioning methods.Secondly,zero drift and gravity compensation algorithms are presented to calibrate the F/T transducer which is installed on the robot end-effector.Next,a force control strategy combining hybrid force-position control with PI/PD control is introduced to be employed in robotic abrasive belt grinding operations where the force control law is applied to the Z direction of the tool frame and the positon control law is used in the X direction of the tool frame.Then,the accuracy of the F/T transducer and the robotic force control system is analyzed to ensure the stability and reliability of force control in the robotic grinding process.Finally,two typical cases on robotic belt grinding of a test workpiece and an aero-engine blade are conducted to validate the practicality and effectiveness of the force control technology proposed.
基金supported by the Postdoctoral Innovation Project of Shandong Province (SDCX-ZG-202303090).
文摘This study investigated the effects of superheated steam(SS)treatment at different temperatures(120℃,150℃,180℃)on the physicochemical properties of broken rice flour and the quality of broken rice cakes.SS treatment at 120℃ significantly enhanced the moisture content of broken rice flour(P<0.05).In contrast,treatments at 150℃ and 180℃ caused decrease of moisture content,amylose leaching,and reduction of damaged starch content.After SS treatment,the pasting properties of broken rice flour increased,along with the rising of storage modulus and loss modulus.The proportion of short chains(DP 6-12)in amylopectin increased from 29.42%to 34.80%(P<0.05),which could delay starch retrogradation.Compared with untreated ones,the SS-150 broken rice cakes showed a significantly higher specific volume(2.96 mL/g,P<0.05),more uniform cell structure,and lower hardness(1.66 N)and chewiness(10.22 mJ).After 7 days of storage,cakes from SS-treated rice flour(150℃ and 180℃)had significantly reduced hardness and chewiness.The study demonstrated that SS treatment could improve the properties of broken rice flour and enhance the quality of broken rice cakes,especially at 150℃ and 180℃.This study presents a method for improving the quality of broken rice flour and rice cakes using superheated steam treatment,addressing challenges related to poor flour characteristics and suboptimal cake quality.The findings offer technical and theoretical support for enhancing rice cake production,contributing to the comprehensive utilization of rice resources.
基金supported by the National Natural Science Foundation of China (No.82274223)。
文摘Aconitum(Ranunculaceae)has a long-standing history in traditional Chinese medicine(TCM),where it has been widely used to treat conditions such as rheumatoid arthritis(RA),myocardial infarction,and heart failure.However,the potency of Aconitum alkaloids,the primary active components of Aconitum,also confers substantial toxicity.Therefore,assessing the efficacy and toxicity of these Aconitum alkaloids is crucial for ensuring clinical effectiveness and safety.Metabolomics,a quantitative method for analyzing low-molecular-weight metabolites involved in metabolic pathways,provides a comprehensive view of the metabolic state across multiple systems in vivo.This approach has become a vital investigative tool for facilitating the evaluation of their efficacy and toxicity,identifying potential sensitive biomarkers,and offering a promising avenue for elucidating the pharmacological and toxicological mechanisms underlying TCM.This review focuses on the applications of metabolomics in pharmacological and toxicological studies of Aconitum alkaloids in recent years and highlights the significant role of metabolomics in exploring compatibility detoxification and the mechanisms of TCM processing,aiming to identify more viable methods for characterizing toxic medicinal plants.
基金Ministry of Education(MOE-T2EP30120-0007,Tier-1 RG107/23)of Singapore for the financial support.
文摘C-glycosides have been demonstrated to have distinct biological functions and therefore display notable pharmacological values,whereas the access to the versatile structural analog of C-glycosides is a significant challenge to their advancement as therapeutic agents.We herein disclose a facial and efficient catalytic C-glycosylation using a glycosyl ortho-2,2-dimethoxycarbony lcyclopropylbenzoate(CCBz)as the donor.The trailblazing glycosyl donor can be simply activated by a non-toxic and easily accessible Sc(Ⅲ)catalyst.The ring-strain release of the incorporated donor-acceptor cyclopropane(DAC)serves as a powerful driving force of the glycosylation system.The adaptability of current methods to different types of donors and acceptors was exemplified.Examinations on the synthetic potential were done with the one-pot synthesis of free C-indolyl-glycosides and the subsequent biological studies,unlocking the antibacterial potentials of these compounds.
基金supported by the National Natural Science Foundation of China(Grant Nos.52227808,52175023,52205024).
文摘Skeletal muscles are essential parts of the human motor system and are mainly regulated by motor units(MUs)through the nervous system.As a widely used noninvasive measurement of MUs,surface EMG cannot obtain in-depth spatial information on MUs.Ultrafast ultrasound(UUS)can measure the mechanical response of MUs from muscle morphology with image sequences.This research proposed a blind source separation method with enhanced interpretability for decoding ultrasound image sequences to obtain the mechanical response of MUs.In particular,the spatiotemporal data were decomposed using non-negative matrix factorization(NMF).Then,the spatial components’multiple probability density functions were obtained using a parametric self-fitting function.The proposed algorithm,called NMF-stICA,was validated on ten groups of computational simulation datasets.The accuracies of the obtained spatial and temporal components were 87.26%±2.18%and 85.13%±1.83%,respectively.Further,a dynamic ultrasound phantom experiment was performed,and all the potential spatial components were correctly decoded.Additionally,isometric contraction human experiments were conducted on the biceps muscle of eight subjects with simultaneous acquisition of UUS and intramuscular electromyography(iEMG).The results showed that the rate of agreement was 58.71%,comparing the decoded components with the firing pattern of iEMG.The proposed decoding method can get precise spatial position and the firing pattern of the MUs in the skeletal muscle.This might help to study the neuromechanical properties of MUs and localize disease in specific muscle regions.
基金supported by the National Natural Science Foundation of China,No.81330042,81620108018(both to SQF),and 81702147(to ZJW)
文摘Bone marrow-derived mesenchymal stem cells differentiate into neurons under the induction of Schwann cells. However, key microRNAs and related pathways for differentiation remain unclear. This study screened and identified differentially expressed microRNAs in bone marrow- derived mesenchymal stem cells induced by Schwann cell-conditioned medium, and explored targets and related pathways involved in their differentiation into neuronal-like cells. Primary bone marrow-derived mesenchymal stem cells were isolated from femoral and tibial bones, while primary Schwann cells were isolated from bilateral saphenous nerves. Bone marrow-derived mesenchymal stem cells were cultured in unconditioned (control group) and Schwann cell-conditioned medium (bone marrow-derived mesenchymal stem cell + Schwann cell group). Neuronal differentiation of bone marrow-derived mesenchymal stem cells induced by Schwann cell-conditioned medium was observed by time-lapse imaging. Upon induction, the morphology of bone marrow-derived mesencaymal stem cells changed into a neural shape with neurites. Results of quantitative reverse transcription-polymerase chain reaction revealed that nestin mRNA expression was upregulated from 1 to 3 days and downregulated from 3 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. Compared with the control group, microtubule-associated protein 2 mRNA expression gradually increased from 1 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. After 7 days of induction, microRNA analysis iden:ified 83 significantly differentially expressed microRNAs between the two groups. Gene Ontology analysis indicated enrichment of microRNA target genes for neuronal projection development, regulation of axonogenesis, and positive regulation of cell proliferation. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that Hippo, Wnt, transforming growth factor-beta, and Hedgehog signaling pathv/ays were potentially associated with neural differentiation of bone marrow-derived mesenchymal stem cells. This study, which carried out successful microRNA analysis of neuronal-like cells differentiated from bone marrow-derived mesenchymal stem cells by Schwann cell induction, revealed key microRNAs and pathways involved in neural differentiation of bone marrow-derived mesenchymal stem cells. All protocols were approved by the Animal Ethics Committee of Institute of Radiation Medicine, Chinese Academy of Medical Sciences on March 12, 2017 (approval number: DWLI-20170311).
基金the National Natural Science Foundation of China(Nos.62273225,81971767,62103267 and 62103263)。
文摘A two-dimensional rectangular solenoid transmitting coil is proposed to address the problem that the three-dimensional receiving coil occupies excessive space inside the capsule robot.The transmitting coil consists of two pairs of rectangular solenoid coils distributed radially along the human body.By changing the direction of current flow,it can generate a two-dimensional magnetic field covering the whole central plane.Firstly,the working mechanism of the wireless power transfer system is introduced,and then the spatial electromagnetic field generated by the transmitting coil is analyzed through both mathematical calculations and finite element simulations.Finally,an experimental platform is built to determine the optimal resonant frequency of the system and validate its feasibility based on the power transfer efficiency and the receiving power.The experimental results demonstrate that when the receiving coil is located at the center of the coil pair,the receiving power is 1416 mW and the power transfer efficiency is 3.96%.Additionally,when the receiving coil operates in the central plane,it can receive sufficient energy regardless of the orientation.