期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Physics-Informed Neural Networks for Multiaxial Fatigue Life Prediction of Aluminum Alloy
1
作者 Ehsan Akbari Tajbakhsh Navid Chakherlou +1 位作者 hamed tabrizchi Amir Mosavi 《Computer Modeling in Engineering & Sciences》 2025年第10期305-325,共21页
The ability to predict multiaxial fatigue life of Al-Alloy 7075-T6 under complex loading conditions is critical to assessing its durability under complex loading conditions,particularly in aerospace,automotive,and str... The ability to predict multiaxial fatigue life of Al-Alloy 7075-T6 under complex loading conditions is critical to assessing its durability under complex loading conditions,particularly in aerospace,automotive,and structural applications.This paper presents a physical-informed neural network(PINN)model to predict the fatigue life of Al-Alloy 7075-T6 over a variety of multiaxial stresses.The model integrates the principles of the Geometric Multiaxial Fatigue Life(GMFL)approach,which is a novel fatigue life prediction approach to estimating fatigue life by combining multiple fatigue criteria.The proposed model aims to estimate fatigue damage accumulation by the GMFL method.The proposed GMFL-PINN combines this physics-based approach with data-driven neural networks.Experimental validation demonstrates that GMFL-PINN outperforms FS,Smith–Watson–Topper(SWT)and Li–Zhang(LZH)fatigue life prediction methods which provides a reliable and scalable solution for structural health assessment and fatigue analysis. 展开更多
关键词 Multiaxial fatigue criteria FATIGUE machine learning deep learning data science artificial intelligence big data aluminum alloy fatigue function critical plane analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部