期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Enhanced energy storage properties and good stability of novel(1-x)Na_(0.5)Bi_(0.5)TiO_(3)-xCa(Mg_(1/3)Nb_(2/3))O_(3) relaxor ferroelectric ceramics prepared by chemical modification 被引量:1
1
作者 Ying Zhang Meng-Han Yan +8 位作者 Zhi-Fei Zhang hai-rui bai Peng Li Wei-Fang Han Ji-Gong Hao Wei Li Yu-Chao Li Chun-Ming Wang Peng Fu 《Journal of Materiomics》 SCIE CSCD 2024年第4期770-782,共13页
The increase in energy consumption and its collateral damage on the environment has encouraged the development of environment-friendly ceramic materials with good energy storage properties.In this work,(1-x)Na_(0.5)Bi... The increase in energy consumption and its collateral damage on the environment has encouraged the development of environment-friendly ceramic materials with good energy storage properties.In this work,(1-x)Na_(0.5)Bi_(0.5)TiO_(3)-xCa(Mg_(1/3)Nb_(2/3))O_(3) ceramics were synthesized by the solid-state reaction method.The 0.88Na_(0.5)Bi_(0.5)TiO_(3)-0.12Ca(Mg_(1/3)Nb_(2/3))O_(3) ceramic exhibited a high recoverable energy storage density of 8.1 J/cm3 and energy storage efficiency of 82.4% at 550 kV/cm.The introduction of Ca(Mg_(1/3)Nb_(2/3))O_(3) reduced the grain size and increased the band gap,thereby enhancing the breakdown field strength of the ceramic materials.The method also resulted in good temperature stability(20–140℃),frequency stability(1–200 Hz),and fatigue stability over 10^(6) cycles.In addition,an ultrahigh power density of 187 MW/cm^(3) and a fast charge-discharge rate(t_(0.9)=57.2 ns)can be obtained simultaneously.Finite element method analysis revealed that the decrease of grain size was beneficial to the increase of breakdown field strength.Therefore,the 0.88Na_(0.5)Bi_(0.5)TiO_(3)-0.12Ca(Mg_(1/3)Nb_(2/3))O_(3) ceramics resulted in high energy storage properties with good stability and were promising environment-friendly materials for advanced pulsed power systems applications. 展开更多
关键词 (1-x)Na_(0.5)Bi_(0.5)TiO_(3)-xCa(Mg_(1/3)Nb_(2/3))O_(3)ceramics Relaxor ferroelectrics Breakdown field strength Energy storage properties STABILITY
原文传递
Preeminent energy storage properties and superior stability of(Ba_((1-x))Bi_(x))(Ti_((1-x))Mg_(2 x/3)Ta_(x/3))O_(3)relaxor ferroelectric ceramics via elongated rod-shaped grains and domain structural regulation
2
作者 Ming Yin Ying Zhang +7 位作者 hai-rui bai Peng Li Yu-Chao Li Wei-Fang Han Ji-Gong Hao Wei Li Chun-Ming Wang Peng Fu 《Journal of Materials Science & Technology》 SCIE EI CAS 2024年第17期207-220,共14页
(Ba_((1-x))Bi_(x))(Ti_((1-x))Mg_(2 x/3)Ta_(x/3))O_(3)(BBTMT-x,x=0.075,0.1,0.125,and 0.15)ceramics were manufactured via a solid-phase reaction method.The pseudo-cubic BaTiO_(3)(BT)as the primary phase and Ba_(4)MgTi_(... (Ba_((1-x))Bi_(x))(Ti_((1-x))Mg_(2 x/3)Ta_(x/3))O_(3)(BBTMT-x,x=0.075,0.1,0.125,and 0.15)ceramics were manufactured via a solid-phase reaction method.The pseudo-cubic BaTiO_(3)(BT)as the primary phase and Ba_(4)MgTi_(11)O_(27)as the secondary phase were detected in BBTMT-x ceramics.The elongated rod-shaped grains therein be-came numerous as x increased.The introduction of Bi/Mg/Ta(BMT)elements transformed BT ceramics from ferroelectrics to relaxor ferroelectrics and induced the formation of short-range order polar nanore-gions(PNRs),which were beneficial for the preeminent energy storage properties(ESPs).The highest ESPs(a giant recoverable energy-storage density W_(rec)of 5.97 J cm^(-3)with a high-efficiencyηof 87.4%)were achieved in BBTMT-0.1 ceramics at 710 kV cm^(-1).BBTMT-0.1 ceramics also possessed excellent fre-quency(1-500 Hz),temperature(30-150℃),and fatigue(cycle number of 1-100,000)stabilities.Finite element simulations(FES)demonstrated that elongated rod-shaped grains had stronger obstacles to the development of electrical branches,which was beneficial to improving the comprehensive ESPs. 展开更多
关键词 Ceramics Relaxor ferroelectrics Energy storage Polar nanoregions Stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部