期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Preeminent energy storage properties and superior stability of(Ba_((1-x))Bi_(x))(Ti_((1-x))Mg_(2 x/3)Ta_(x/3))O_(3)relaxor ferroelectric ceramics via elongated rod-shaped grains and domain structural regulation
1
作者 Ming Yin Ying Zhang +7 位作者 hai-rui bai Peng Li Yu-Chao Li Wei-Fang Han Ji-Gong Hao Wei Li Chun-Ming Wang Peng Fu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第17期207-220,共14页
(Ba_((1-x))Bi_(x))(Ti_((1-x))Mg_(2 x/3)Ta_(x/3))O_(3)(BBTMT-x,x=0.075,0.1,0.125,and 0.15)ceramics were manufactured via a solid-phase reaction method.The pseudo-cubic BaTiO_(3)(BT)as the primary phase and Ba_(4)MgTi_(... (Ba_((1-x))Bi_(x))(Ti_((1-x))Mg_(2 x/3)Ta_(x/3))O_(3)(BBTMT-x,x=0.075,0.1,0.125,and 0.15)ceramics were manufactured via a solid-phase reaction method.The pseudo-cubic BaTiO_(3)(BT)as the primary phase and Ba_(4)MgTi_(11)O_(27)as the secondary phase were detected in BBTMT-x ceramics.The elongated rod-shaped grains therein be-came numerous as x increased.The introduction of Bi/Mg/Ta(BMT)elements transformed BT ceramics from ferroelectrics to relaxor ferroelectrics and induced the formation of short-range order polar nanore-gions(PNRs),which were beneficial for the preeminent energy storage properties(ESPs).The highest ESPs(a giant recoverable energy-storage density W_(rec)of 5.97 J cm^(-3)with a high-efficiencyηof 87.4%)were achieved in BBTMT-0.1 ceramics at 710 kV cm^(-1).BBTMT-0.1 ceramics also possessed excellent fre-quency(1-500 Hz),temperature(30-150℃),and fatigue(cycle number of 1-100,000)stabilities.Finite element simulations(FES)demonstrated that elongated rod-shaped grains had stronger obstacles to the development of electrical branches,which was beneficial to improving the comprehensive ESPs. 展开更多
关键词 CERAMICS Relaxor ferroelectrics Energy storage Polar nanoregions STABILITY
原文传递
Enhanced energy storage properties and good stability of novel(1-x)Na_(0.5)Bi_(0.5)TiO_(3)-xCa(Mg_(1/3)Nb_(2/3))O_(3) relaxor ferroelectric ceramics prepared by chemical modification 被引量:1
2
作者 Ying Zhang Meng-Han Yan +8 位作者 Zhi-Fei Zhang hai-rui bai Peng Li Wei-Fang Han Ji-Gong Hao Wei Li Yu-Chao Li Chun-Ming Wang Peng Fu 《Journal of Materiomics》 SCIE CSCD 2024年第4期770-782,共13页
The increase in energy consumption and its collateral damage on the environment has encouraged the development of environment-friendly ceramic materials with good energy storage properties.In this work,(1-x)Na_(0.5)Bi... The increase in energy consumption and its collateral damage on the environment has encouraged the development of environment-friendly ceramic materials with good energy storage properties.In this work,(1-x)Na_(0.5)Bi_(0.5)TiO_(3)-xCa(Mg_(1/3)Nb_(2/3))O_(3) ceramics were synthesized by the solid-state reaction method.The 0.88Na_(0.5)Bi_(0.5)TiO_(3)-0.12Ca(Mg_(1/3)Nb_(2/3))O_(3) ceramic exhibited a high recoverable energy storage density of 8.1 J/cm3 and energy storage efficiency of 82.4% at 550 kV/cm.The introduction of Ca(Mg_(1/3)Nb_(2/3))O_(3) reduced the grain size and increased the band gap,thereby enhancing the breakdown field strength of the ceramic materials.The method also resulted in good temperature stability(20–140℃),frequency stability(1–200 Hz),and fatigue stability over 10^(6) cycles.In addition,an ultrahigh power density of 187 MW/cm^(3) and a fast charge-discharge rate(t_(0.9)=57.2 ns)can be obtained simultaneously.Finite element method analysis revealed that the decrease of grain size was beneficial to the increase of breakdown field strength.Therefore,the 0.88Na_(0.5)Bi_(0.5)TiO_(3)-0.12Ca(Mg_(1/3)Nb_(2/3))O_(3) ceramics resulted in high energy storage properties with good stability and were promising environment-friendly materials for advanced pulsed power systems applications. 展开更多
关键词 (1-x)Na_(0.5)Bi_(0.5)TiO_(3)-xCa(Mg_(1/3)Nb_(2/3))O_(3)ceramics Relaxor ferroelectrics Breakdown field strength Energy storage properties STABILITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部