One new species,Bactrocera(Bactrocera)latizona Huang,Yu&Bai sp.nov.,from Mengla,Yunnan Province,China is described.Illustrations of the new species and a key to common species of the subgenus of Bactrocera from Yu...One new species,Bactrocera(Bactrocera)latizona Huang,Yu&Bai sp.nov.,from Mengla,Yunnan Province,China is described.Illustrations of the new species and a key to common species of the subgenus of Bactrocera from Yunnan are given.展开更多
The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconci...The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconcile this contradiction,two Mg-0.1Sc-0.1Y-0.1Ag anodes with different residual strain distribution through extrusion with/without annealing are fabricated.The results indicate that annealing can significantly lessen the“pseudo-anode”regions,thereby changing the dissolution mode of the matrix and achieving an effective dissolution during discharge.Additionally,p-type semiconductor characteristic of discharge productfilm could suppress the self-corrosion reaction without reducing the polarization of anode.The magnesium-air battery utilizing annealed Mg-0.1Sc-0.1Y-0.1Ag as anode achieves a synergistic improvement in specific capacity(1388.89 mA h g^(-1))and energy density(1960.42 mW h g^(-1)).This anode modification method accelerates the advancement of high efficiency and long lifespan magnesium-air batteries,offering renewable and cost-effective energy solutions for electronics and emergency equipment.展开更多
A novel precipitate-free Mg-0.1Sn anode with a homogeneous equal-axis grain structure was developed and rolled successfully at 573 K.Electrochemical test results indicate that the Mg-0.1Sn alloy exhibits enhanced anod...A novel precipitate-free Mg-0.1Sn anode with a homogeneous equal-axis grain structure was developed and rolled successfully at 573 K.Electrochemical test results indicate that the Mg-0.1Sn alloy exhibits enhanced anode dissolution kinetics.A Mg-air battery prepared using this anode exhibits a cell voltage of 1.626 V at 0.5 mA/cm^(2),reasonable anodic efficiency of 58.17%,and good specific energy of 1730.96 mW·h/g at 10 mA/cm^(2).This performance is attributed to the effective reactive anode surface,the suppressed chunk effect,and weak self-corrosion owing to the homogeneous basal texture.展开更多
The microstructural characterization,corrosion behavior and tensile properties of the extruded lean Mg−1Bi−0.5Sn−0.5In(wt.%)alloy were investigated through scanning electron microscopy(SEM),electron backscatter diffra...The microstructural characterization,corrosion behavior and tensile properties of the extruded lean Mg−1Bi−0.5Sn−0.5In(wt.%)alloy were investigated through scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),X-ray photoelectron spectroscopy(XPS),electrochemical measurements and tensile tests.The results reveal that a microstructure consisting of dynamically recrystallized and deformed grains is obtained.Notably,the investigated alloy exhibits excellent strength−ductility synergy,with tensile yield strength(TYS),ultimate tensile strength(UTS)and elongation(EL)of 254.8 MPa,315.4 MPa,and 25.3%,respectively.Furthermore,in 3.5 wt.%NaCl solution,with the increase of immersion time,the dominant corrosion mechanism of the studied alloy transforms from pitting corrosion to filiform corrosion.After the immersion for 24 h,a composite oxide film(SnO2−Bi2O3−In2O3)is formed,which delays the corrosion process,and the corrosion rate(PH=1.53 mm/a)is finally stabilized.展开更多
Entanglement asymmetry(EA) has emerged as a powerful tool for characterizing symmetry breaking in quantum many-body systems. In this Letter, we explore how symmetry is dynamically broken through the lens of EA in two ...Entanglement asymmetry(EA) has emerged as a powerful tool for characterizing symmetry breaking in quantum many-body systems. In this Letter, we explore how symmetry is dynamically broken through the lens of EA in two distinct scenarios: a non-symmetric Hamiltonian quench and a non-symmetric random quantum circuit, with a particular focus on U(1) symmetry. In the former case, symmetry remains broken in the subsystem at late times, whereas in the latter case, the symmetry is initially broken and subsequently restored, consistent with the principles of quantum thermalization. Notably, the growth of EA exhibits unexpected overshooting behavior at early times in both contexts, contrasting with the behavior of charge variance. We also consider dynamics of non-symmetric initial states under the symmetry-breaking evolution. Due to the competition of symmetry-breaking in both the initial state and Hamiltonian, the early-time EA can increase and decrease, while quantum Mpemba effects remain evident despite the weak symmetry-breaking in both settings.展开更多
Systems hosting flat bands offer a powerful platform for exploring strong correlation physics.Theoretically,topological degeneracy arising in systems with non-trivial topological orders on periodic manifolds of non-ze...Systems hosting flat bands offer a powerful platform for exploring strong correlation physics.Theoretically,topological degeneracy arising in systems with non-trivial topological orders on periodic manifolds of non-zero genus can generate ideal flat bands.However,experimental realization of such geometrically engineered systems is very difficult.In this work,we demonstrate that flat planes with strategically patterned hole defects can engineer ideal flat bands.We construct two families of models:singular flat band systems where degeneracy is stabilized by non-contractible loop excitations tied to hole defects and perfectly nested van Hove systems where degeneracy arises from line excitations in momentum space.These models circumvent the need for exotic manifolds while retaining the essential features of topological flat bands.By directly linking defect engineering to degeneracy mechanisms,our results establish a scalable framework for experimentally accessible flat band design.展开更多
A modified three-dimensional turbulence parameterization scheme,implemented by replacing the conventional eddydiffusivity formulation with the H-gradient model,has shown good performance in representing the subgrid-sc...A modified three-dimensional turbulence parameterization scheme,implemented by replacing the conventional eddydiffusivity formulation with the H-gradient model,has shown good performance in representing the subgrid-scale(SGS)turbulent fluxes associated with convective clouds in idealized tropical cyclone(TC)simulations.To evaluate the capability of the modified scheme in simulating real TCs,two sets of simulations of TC Soudelor(2015),one with the modified scheme and the other with the original scheme,are conducted.Comparisons with observations and coarse-grained results from large eddy simulation benchmarks demonstrate that the modified scheme improves the forecasting of the intensity and structure,as well as the SGS turbulent fluxes of Soudelor.Using the modified turbulence scheme,a TC with stronger intensity,smaller size,a shallower but stronger inflow layer,and a more intense but less inclined convective updraft is simulated.The rapid intensification process and secondary eyewall features can also be captured better by the modified scheme.By analyzing the mechanism by which turbulent transport impacts the intensity and structure of TCs,it is shown that accurately representing the turbulent transport associated with convective clouds above the planetary boundary layer helps to initiate the TC spin-up process.展开更多
Zn-Al eutectoid alloy(ZA22)has ultra-high damping property,but its mechanical properties are still relatively low.In order to simultaneously improve the tensile strength and plasticity,a novel Al matrix composite inoc...Zn-Al eutectoid alloy(ZA22)has ultra-high damping property,but its mechanical properties are still relatively low.In order to simultaneously improve the tensile strength and plasticity,a novel Al matrix composite inoculant containing in-situ formed Al_(2)O_(3) and Al3Zr particles was designed and used to reinforce the ZA22 alloy.The microstructure of the ZA22 alloy was significantly refined.Fine Al_(2)O_(3) particles were uniformly distributed in theαphase and the lamellar eutectoid structure,whereas Al3Zr particles were distributed in theαphase and at theα/ηinterface.Property tests showed that the tensile mechanical properties of the reinforced ZA22 alloys were significantly improved.The maximum tensile strength and elongation reached 355 MPa and 7.62%,which were 1.50 and 1.89 times those of the original ZA22 alloy,respectively.The increase in mechanical properties is attributed to the multiple strengthening and toughening factors constructed in the refined microstructure.展开更多
BACKGROUND Acute cerebral infarction(ACI),a leading cause of death and disability,causes brain ischemia due to vessel blockage.Current time-limited interventions,such as clot removal,often fail to restore full functio...BACKGROUND Acute cerebral infarction(ACI),a leading cause of death and disability,causes brain ischemia due to vessel blockage.Current time-limited interventions,such as clot removal,often fail to restore full function.Neurorestoration is vital,but complicated.Vascular endothelial growth factor(VEGF)and basic fibroblast growth factor(bFGF)promote angiogenesis and neuroprotection.Stem cell therapy has potential to promote neurorestoration.Specifically,neural stem cells(NSC)reconstruct neural tissue,while mesenchymal stem cells(MSCs)provide support and secrete beneficial factors.Combining NSCs and MSCs in stem cell therapy may synergistically enhance ACI recovery,potentially via the regulation of VEGF and bFGF.However,the mechanisms underlying this combined approach remain unclear.AIM To investigate the therapeutic effect of combined NSC and MSC transplantation on neurological recovery and bFGF/VEGF expression in ACI patients.METHODS This study enrolled 156 patients with ACI treated from June 2022 to June 2023.Patients were randomly assigned to two groups:The control group(n=78)received conventional drug therapy,while the observation group(n=78)received conventional therapy and combined NSC and MSC transplantation.The following outcomes were compared between groups:National Institutes of Health Stroke Scale(NIHSS)score,Barthel index,cerebral perfusion and diffusion on magnetic resonance imaging,serum bFGF and VEGF levels,clinical efficacy,and adverse events.RESULTS Serum VEGF and bFGF levels negatively correlated with NIHSS scores in patients with ACI(r=-0.388,r=-0.239;P<0.05).The observation group(NSC and MSC)showed a significantly higher clinical efficacy of treatment than the controls(85.9%vs 69.2%;P<0.05).Both groups showed improved cerebral perfusion,increased Barthel index,and decreased NIHSS scores post-treatment(P<0.05),with significantly greater improvements in the observation group.Serum VEGF and bFGF levels increased significantly in both groups(P<0.05),but were higher in the observation group.Adverse events in the observation group(transient fever:4 cases;agitation:1 case;headache:2 cases)were mild and resolved with symptomatic treatment.Six-month follow-up revealed no abnormalities in magnetic resonance imaging,electrocardiogram,or blood tests.CONCLUSION NSC-MSC combination therapy enhances neurological function and cerebral perfusion in patients with ACI by upregulating VEGF and bFGF expression,demonstrating favorable clinical efficacy and safety.展开更多
Ga_(2)O_(3) is considered a potential anode material for next-generation lithium-ion batteries due to its high theoretical capacity and unique self-healing capability.To develop a novel preparation method and in-depth...Ga_(2)O_(3) is considered a potential anode material for next-generation lithium-ion batteries due to its high theoretical capacity and unique self-healing capability.To develop a novel preparation method and in-depth understanding of the electrochemical reaction mechanism of Ga_(2)O_(3),a brand-new liquid-liquid dealloying strategy was exploited to construct porous α-Ga_(2)O_(3) nanowire networks.Profiting from the well-designed porous structure,the material exhibits impressive cycling stability of a reversible capacity of 603.9 mA·h/g after 200 cycles at 1000 mA/g and a capacity retention of 125.2 mA·h/g after 100 cycles at 0.5C when assembling to Ga_(2)O_(3)//LiFePO_(4) full cells.The lithiation/delithiation reaction mechanism of the porous Ga_(2)O_(3) anodes is further revealed by ex-situ Raman,XRD,TEM measurements,and density functional theoretical(DFT)calculations,which establishes a correlation between the electrochemical performance and the phase transition fromα-Ga_(2)O_(3) to β-Ga_(2)O_(3) during cycling.展开更多
A self-standing dual-electric field synergistic[TiO_(2)/polyvinylidene fluoride(PVDF)]//[g-C3 N4 tube/PVDF]Janus nanofibres(named as[TP]//[CTP]JNs)S-scheme heterostructure piezoelectric photocatalyst is designed and c...A self-standing dual-electric field synergistic[TiO_(2)/polyvinylidene fluoride(PVDF)]//[g-C3 N4 tube/PVDF]Janus nanofibres(named as[TP]//[CTP]JNs)S-scheme heterostructure piezoelectric photocatalyst is designed and constructed via conjugative electrospinning.Dual-fields of built-in electric fields supplied by S-scheme heterostructure and piezoelectric field formed by PVDF jointly boost separation and transfer of photo-induced charges.As a case study,piezoelectric photocatalytic efficiency of[TP]//[CTP]JNs for tetracycline hydrochloride(TCH)under ultrasonic united with simulated sunlight illumination is 93.35%(40 min),which is 1.39 times of the photocatalytic efficiency(light illumination only)and 5.32 times of piezoelectric catalytic efficiency(applying ultrasonic only),proving the advantages of the synergistic effect of piezoelectric catalysis and photocatalysis on contaminant degradation.The dynamic behaviors of photocatalysis and photo-generated charges are deeply revealed through fs-TA and TRPL decay spectra,and the degradation pathways of antibiotics are reasonably speculated by combining LCMS spectra with Fukui index.By the degradation ability,COMSOL simulation and DFT calculation,the structural advantage of Janus nanofibers is fully verified,and S-scheme charge transfer mechanism is confirmed by combining a series of sound ample experiments with theoretical calculations.Additionally,the construction mechanism of Janus nanofibers is proposed,and corresponding construction technique is established.展开更多
To study the relationships between rock mass crack propagation and damage and confining pressure under blast impact loading during straight-hole cut blasting,tests were performed under different confining pressures.Th...To study the relationships between rock mass crack propagation and damage and confining pressure under blast impact loading during straight-hole cut blasting,tests were performed under different confining pressures.Then,the characteristics of rock mass crack development were analyzed,and the pressure resistance values of core samples before and after blasting were compared to study the trends of rock mass damage.Moreover,a three-dimensional numerical simulation model was established by LS-DYNA to analyze the stress wave propagation,cavity shape and crack propagation characteristics under different confining pressures.The propagation of rock blasting cracks is negatively correlated with the confining pressure.The greater the confining pressure,the shorter the crack development time.Additionally,the crack width is reduced from 0.4-1.7 to 0.04-1.4 mm,and the length is shortened from 280 to 120 mm.A comparison of the compressive strength revealed that blasting reduces the compressive strength of the rock mass.The greater the distance from the explosion source,the lower the degree of strength attenuation.An increase in the confining pressure can inhibit strength attenuation.Numerical simulations revealed that under the same confining pressure,the stress first peaks at the bottom of the blast hole.The greater the confining pressure,the longer the stress peak duration,the smaller the cavity volume,and the shorter the crack propagation length and depth.Under a confining pressure of 4 MPa,the longest crack was only 154.5 mm in length and 102 mm in depth.The research results provide a scientific basis for controlling rock damage and optimizing design in the excavation of deep rock roadways by blasting.展开更多
BACKGROUND Studies have shown that locomotive syndrome(LS)is significantly correlated with adverse outcomes,such as decreased self-care abilities,fractures,and increased mortality.Subthreshold depression(StD)is consid...BACKGROUND Studies have shown that locomotive syndrome(LS)is significantly correlated with adverse outcomes,such as decreased self-care abilities,fractures,and increased mortality.Subthreshold depression(StD)is considered an independent predictor of clinical depression,regarded as its prodromal stage,and even linked to increased mortality risk.Limited research has addressed the prevalence and relationship between LS and StD in elderly cancer patients.Understanding the prevalence of LS and StD among elderly cancer patients and elucidating their relationship will provide evidence to support the development of targeted interventions,thereby improving health outcomes in this population.AIM To investigate the relationship between musculoskeletal system function and predepressive states in elderly cancer patients.METHODS A convenience sampling method was employed to recruit 500 elderly cancer patients undergoing follow-up visits at the Department of Oncology,Affiliated Hospital of Jiangnan University,from April 2024 to December 2024.Participants completed the general information questionnaire, the 25-question Geriatric Locomotive Function Scale, and theGeriatric Depression Scale-Short Form-15. Influencing factors were analyzed, and correlation analyses wereperformed.RESULTSA total of 483 elderly cancer patients successfully completed the study. The prevalence of LS and StD amongparticipants was 56.5% and 38.7%, respectively. Logistic regression analysis identified age, tumor metastasis,exercise habits, and the presence of StD as significant risk factors for LS in elderly cancer patients. Additionally,having three or more chronic diseases and LS were significant predictors for developing StD. Spearman’s correlationanalysis revealed a significant positive correlation between LS and StD (r = 0.424, P < 0.001).CONCLUSIONElderly cancer patients exhibit a high prevalence of LS and StD, conditions which are positively correlated andmutually influential. Thus, it is critical to monitor and address pre-depressive states while evaluating and managingmotor function in this population.展开更多
The microstructure and mechanical properties of 2524 Al alloy after quenching in liquid nitrogen(LN_(2))were investigated by TEM and compared with those of cold water quenching.The results show that the LN_(2) quenchi...The microstructure and mechanical properties of 2524 Al alloy after quenching in liquid nitrogen(LN_(2))were investigated by TEM and compared with those of cold water quenching.The results show that the LN_(2) quenching process effectively induces the formation of dislocation loops.These loops become large and unevenly distribute after aging for 15 min.Furthermore,such loops become rapidly immobilized by the precipitation of coarse S phases after 1 h aging.The alloy quenched in LN_(2) demonstrates superior peak hardness and displays a more rapid response to subsequent aging treatments compared with the cold water-quenched one.Despite the short aging time,LN_(2)-quenched sample achieves tensile strength of 488 MPa.This enhanced strength is attributed to the strengthening effect of numerous finely dispersed Guinier-Preston-Bagaryatsky(GPB)zones,in conjunction with the inhomogeneous formation of S phase on the dislocation loops.展开更多
文摘One new species,Bactrocera(Bactrocera)latizona Huang,Yu&Bai sp.nov.,from Mengla,Yunnan Province,China is described.Illustrations of the new species and a key to common species of the subgenus of Bactrocera from Yunnan are given.
基金the National Natural Science:Foundation of China(52375370)the Open Project of Salt Lake Chemical Engineering Research Complex,Qinghai University(2023-DXSSKF-Z02)+2 种基金the Nat-ural Science Foundation of Shanxi(202103021224049)GDAS Projects of International cooperation platform of Sci-ence and Technology(2022GDASZH-2022010203-003)Guangdong province Science and Technology Plan Projects(2023B1212060045).
文摘The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconcile this contradiction,two Mg-0.1Sc-0.1Y-0.1Ag anodes with different residual strain distribution through extrusion with/without annealing are fabricated.The results indicate that annealing can significantly lessen the“pseudo-anode”regions,thereby changing the dissolution mode of the matrix and achieving an effective dissolution during discharge.Additionally,p-type semiconductor characteristic of discharge productfilm could suppress the self-corrosion reaction without reducing the polarization of anode.The magnesium-air battery utilizing annealed Mg-0.1Sc-0.1Y-0.1Ag as anode achieves a synergistic improvement in specific capacity(1388.89 mA h g^(-1))and energy density(1960.42 mW h g^(-1)).This anode modification method accelerates the advancement of high efficiency and long lifespan magnesium-air batteries,offering renewable and cost-effective energy solutions for electronics and emergency equipment.
基金partially supported by the National Natural Science Foundation of China(No.51901153)Shanxi Scholarship Council of China(No.2019032)+1 种基金the Natural Science Foundation of Shanxi,China(No.202103021224049)the Shanxi Zhejiang University New Materials and Chemical Research Institute Scientific Research Project,China(No.2022SX-TD025)。
文摘A novel precipitate-free Mg-0.1Sn anode with a homogeneous equal-axis grain structure was developed and rolled successfully at 573 K.Electrochemical test results indicate that the Mg-0.1Sn alloy exhibits enhanced anode dissolution kinetics.A Mg-air battery prepared using this anode exhibits a cell voltage of 1.626 V at 0.5 mA/cm^(2),reasonable anodic efficiency of 58.17%,and good specific energy of 1730.96 mW·h/g at 10 mA/cm^(2).This performance is attributed to the effective reactive anode surface,the suppressed chunk effect,and weak self-corrosion owing to the homogeneous basal texture.
基金supported by the National Natural Science Foundation of China(No.51901153)the Natural Science Foundation of Shanxi,China(No.202103021224049)+1 种基金the Shanxi Zhejiang University New Materials and Chemical Research Institute Scientific Research Project,China(No.2022SX-TD025)the Open Project of Salt Lake Chemical Engineering Research Complex,Qinghai University,China(No.2023-DXSSKF-Z02).
文摘The microstructural characterization,corrosion behavior and tensile properties of the extruded lean Mg−1Bi−0.5Sn−0.5In(wt.%)alloy were investigated through scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),X-ray photoelectron spectroscopy(XPS),electrochemical measurements and tensile tests.The results reveal that a microstructure consisting of dynamically recrystallized and deformed grains is obtained.Notably,the investigated alloy exhibits excellent strength−ductility synergy,with tensile yield strength(TYS),ultimate tensile strength(UTS)and elongation(EL)of 254.8 MPa,315.4 MPa,and 25.3%,respectively.Furthermore,in 3.5 wt.%NaCl solution,with the increase of immersion time,the dominant corrosion mechanism of the studied alloy transforms from pitting corrosion to filiform corrosion.After the immersion for 24 h,a composite oxide film(SnO2−Bi2O3−In2O3)is formed,which delays the corrosion process,and the corrosion rate(PH=1.53 mm/a)is finally stabilized.
基金the support of the International Young Scientist Fellowship of the Institute of Physics,Chinese Academy of Sciences (Grant No.202407)supported by the Innovation Program for Quantum Science and Technology (Grant No.2024ZD0301700)+1 种基金the start-up grant at IOP-CAS.ZXL is supported by the Beijing Natural Science Foundation (Grant No.JR25007)the National Natural Science Foundation of China (Grants No.12347107and 12474146)。
文摘Entanglement asymmetry(EA) has emerged as a powerful tool for characterizing symmetry breaking in quantum many-body systems. In this Letter, we explore how symmetry is dynamically broken through the lens of EA in two distinct scenarios: a non-symmetric Hamiltonian quench and a non-symmetric random quantum circuit, with a particular focus on U(1) symmetry. In the former case, symmetry remains broken in the subsystem at late times, whereas in the latter case, the symmetry is initially broken and subsequently restored, consistent with the principles of quantum thermalization. Notably, the growth of EA exhibits unexpected overshooting behavior at early times in both contexts, contrasting with the behavior of charge variance. We also consider dynamics of non-symmetric initial states under the symmetry-breaking evolution. Due to the competition of symmetry-breaking in both the initial state and Hamiltonian, the early-time EA can increase and decrease, while quantum Mpemba effects remain evident despite the weak symmetry-breaking in both settings.
基金supported by the Ministry of Science and Technology(Grant No.2022YFA1403901)the National Natural Science Foundation of China(Grant Nos.12494594,11888101,12174428,and 12504192)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB28000000)the New Cornerstone Investigator Program,the Chinese Academy of Sciences through the Youth Innovation Promotion Association(Grant No.2022YSBR-048)the Shanghai Science and Technology Innovation Action Plan(Grant No.24LZ1400800).
文摘Systems hosting flat bands offer a powerful platform for exploring strong correlation physics.Theoretically,topological degeneracy arising in systems with non-trivial topological orders on periodic manifolds of non-zero genus can generate ideal flat bands.However,experimental realization of such geometrically engineered systems is very difficult.In this work,we demonstrate that flat planes with strategically patterned hole defects can engineer ideal flat bands.We construct two families of models:singular flat band systems where degeneracy is stabilized by non-contractible loop excitations tied to hole defects and perfectly nested van Hove systems where degeneracy arises from line excitations in momentum space.These models circumvent the need for exotic manifolds while retaining the essential features of topological flat bands.By directly linking defect engineering to degeneracy mechanisms,our results establish a scalable framework for experimentally accessible flat band design.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFC3000803)the National Natural Science Foundation of China(Grant Nos.42375149,41975133 and 42205070)the Shanghai Pujiang Program(Grant No.22PJ1415900)。
文摘A modified three-dimensional turbulence parameterization scheme,implemented by replacing the conventional eddydiffusivity formulation with the H-gradient model,has shown good performance in representing the subgrid-scale(SGS)turbulent fluxes associated with convective clouds in idealized tropical cyclone(TC)simulations.To evaluate the capability of the modified scheme in simulating real TCs,two sets of simulations of TC Soudelor(2015),one with the modified scheme and the other with the original scheme,are conducted.Comparisons with observations and coarse-grained results from large eddy simulation benchmarks demonstrate that the modified scheme improves the forecasting of the intensity and structure,as well as the SGS turbulent fluxes of Soudelor.Using the modified turbulence scheme,a TC with stronger intensity,smaller size,a shallower but stronger inflow layer,and a more intense but less inclined convective updraft is simulated.The rapid intensification process and secondary eyewall features can also be captured better by the modified scheme.By analyzing the mechanism by which turbulent transport impacts the intensity and structure of TCs,it is shown that accurately representing the turbulent transport associated with convective clouds above the planetary boundary layer helps to initiate the TC spin-up process.
基金supported by the Foundation Strengthening Program of China(No.2019-JCJQ-ZD-142-00)the Natural Science Foundation of Hebei Province,China(No.E2021202017)the Foundation of Guangdong Academy of Sciences,China(No.2021GDASYL-20210102002)。
文摘Zn-Al eutectoid alloy(ZA22)has ultra-high damping property,but its mechanical properties are still relatively low.In order to simultaneously improve the tensile strength and plasticity,a novel Al matrix composite inoculant containing in-situ formed Al_(2)O_(3) and Al3Zr particles was designed and used to reinforce the ZA22 alloy.The microstructure of the ZA22 alloy was significantly refined.Fine Al_(2)O_(3) particles were uniformly distributed in theαphase and the lamellar eutectoid structure,whereas Al3Zr particles were distributed in theαphase and at theα/ηinterface.Property tests showed that the tensile mechanical properties of the reinforced ZA22 alloys were significantly improved.The maximum tensile strength and elongation reached 355 MPa and 7.62%,which were 1.50 and 1.89 times those of the original ZA22 alloy,respectively.The increase in mechanical properties is attributed to the multiple strengthening and toughening factors constructed in the refined microstructure.
文摘BACKGROUND Acute cerebral infarction(ACI),a leading cause of death and disability,causes brain ischemia due to vessel blockage.Current time-limited interventions,such as clot removal,often fail to restore full function.Neurorestoration is vital,but complicated.Vascular endothelial growth factor(VEGF)and basic fibroblast growth factor(bFGF)promote angiogenesis and neuroprotection.Stem cell therapy has potential to promote neurorestoration.Specifically,neural stem cells(NSC)reconstruct neural tissue,while mesenchymal stem cells(MSCs)provide support and secrete beneficial factors.Combining NSCs and MSCs in stem cell therapy may synergistically enhance ACI recovery,potentially via the regulation of VEGF and bFGF.However,the mechanisms underlying this combined approach remain unclear.AIM To investigate the therapeutic effect of combined NSC and MSC transplantation on neurological recovery and bFGF/VEGF expression in ACI patients.METHODS This study enrolled 156 patients with ACI treated from June 2022 to June 2023.Patients were randomly assigned to two groups:The control group(n=78)received conventional drug therapy,while the observation group(n=78)received conventional therapy and combined NSC and MSC transplantation.The following outcomes were compared between groups:National Institutes of Health Stroke Scale(NIHSS)score,Barthel index,cerebral perfusion and diffusion on magnetic resonance imaging,serum bFGF and VEGF levels,clinical efficacy,and adverse events.RESULTS Serum VEGF and bFGF levels negatively correlated with NIHSS scores in patients with ACI(r=-0.388,r=-0.239;P<0.05).The observation group(NSC and MSC)showed a significantly higher clinical efficacy of treatment than the controls(85.9%vs 69.2%;P<0.05).Both groups showed improved cerebral perfusion,increased Barthel index,and decreased NIHSS scores post-treatment(P<0.05),with significantly greater improvements in the observation group.Serum VEGF and bFGF levels increased significantly in both groups(P<0.05),but were higher in the observation group.Adverse events in the observation group(transient fever:4 cases;agitation:1 case;headache:2 cases)were mild and resolved with symptomatic treatment.Six-month follow-up revealed no abnormalities in magnetic resonance imaging,electrocardiogram,or blood tests.CONCLUSION NSC-MSC combination therapy enhances neurological function and cerebral perfusion in patients with ACI by upregulating VEGF and bFGF expression,demonstrating favorable clinical efficacy and safety.
基金the Natural Science Foundation of Hebei Province,China(No.E2023202253)Hebei Higher Education Teaching Reform Research and Practice Project,China(No.2021GJJG050).
文摘Ga_(2)O_(3) is considered a potential anode material for next-generation lithium-ion batteries due to its high theoretical capacity and unique self-healing capability.To develop a novel preparation method and in-depth understanding of the electrochemical reaction mechanism of Ga_(2)O_(3),a brand-new liquid-liquid dealloying strategy was exploited to construct porous α-Ga_(2)O_(3) nanowire networks.Profiting from the well-designed porous structure,the material exhibits impressive cycling stability of a reversible capacity of 603.9 mA·h/g after 200 cycles at 1000 mA/g and a capacity retention of 125.2 mA·h/g after 100 cycles at 0.5C when assembling to Ga_(2)O_(3)//LiFePO_(4) full cells.The lithiation/delithiation reaction mechanism of the porous Ga_(2)O_(3) anodes is further revealed by ex-situ Raman,XRD,TEM measurements,and density functional theoretical(DFT)calculations,which establishes a correlation between the electrochemical performance and the phase transition fromα-Ga_(2)O_(3) to β-Ga_(2)O_(3) during cycling.
基金supported by the National Natural Science Foundation of China(No.52173155)the Natural Science Foundation of Jilin Province(Nos.YDZJ202101ZYTS130,YDZJ202101ZYTS059)the Natural Science Foundation of Chongqing(Nos.cstc2021jcyj-msxmX1076,cstc2021jcyj-msxmX0798).
文摘A self-standing dual-electric field synergistic[TiO_(2)/polyvinylidene fluoride(PVDF)]//[g-C3 N4 tube/PVDF]Janus nanofibres(named as[TP]//[CTP]JNs)S-scheme heterostructure piezoelectric photocatalyst is designed and constructed via conjugative electrospinning.Dual-fields of built-in electric fields supplied by S-scheme heterostructure and piezoelectric field formed by PVDF jointly boost separation and transfer of photo-induced charges.As a case study,piezoelectric photocatalytic efficiency of[TP]//[CTP]JNs for tetracycline hydrochloride(TCH)under ultrasonic united with simulated sunlight illumination is 93.35%(40 min),which is 1.39 times of the photocatalytic efficiency(light illumination only)and 5.32 times of piezoelectric catalytic efficiency(applying ultrasonic only),proving the advantages of the synergistic effect of piezoelectric catalysis and photocatalysis on contaminant degradation.The dynamic behaviors of photocatalysis and photo-generated charges are deeply revealed through fs-TA and TRPL decay spectra,and the degradation pathways of antibiotics are reasonably speculated by combining LCMS spectra with Fukui index.By the degradation ability,COMSOL simulation and DFT calculation,the structural advantage of Janus nanofibers is fully verified,and S-scheme charge transfer mechanism is confirmed by combining a series of sound ample experiments with theoretical calculations.Additionally,the construction mechanism of Janus nanofibers is proposed,and corresponding construction technique is established.
基金The National Natural Science Foundation of China(No.51874189)the Shandong Provincial Natural Science Foundation(Nos.ZR2023ME106 and ZR2023ME055)the Open Fund Project of the Engineering Research Center of the Ministry of Education for Mining Underground Engineering(No.JYBGCZX2021102).
文摘To study the relationships between rock mass crack propagation and damage and confining pressure under blast impact loading during straight-hole cut blasting,tests were performed under different confining pressures.Then,the characteristics of rock mass crack development were analyzed,and the pressure resistance values of core samples before and after blasting were compared to study the trends of rock mass damage.Moreover,a three-dimensional numerical simulation model was established by LS-DYNA to analyze the stress wave propagation,cavity shape and crack propagation characteristics under different confining pressures.The propagation of rock blasting cracks is negatively correlated with the confining pressure.The greater the confining pressure,the shorter the crack development time.Additionally,the crack width is reduced from 0.4-1.7 to 0.04-1.4 mm,and the length is shortened from 280 to 120 mm.A comparison of the compressive strength revealed that blasting reduces the compressive strength of the rock mass.The greater the distance from the explosion source,the lower the degree of strength attenuation.An increase in the confining pressure can inhibit strength attenuation.Numerical simulations revealed that under the same confining pressure,the stress first peaks at the bottom of the blast hole.The greater the confining pressure,the longer the stress peak duration,the smaller the cavity volume,and the shorter the crack propagation length and depth.Under a confining pressure of 4 MPa,the longest crack was only 154.5 mm in length and 102 mm in depth.The research results provide a scientific basis for controlling rock damage and optimizing design in the excavation of deep rock roadways by blasting.
基金Supported by Wuxi Institute of Translational Medicine Project Program,No.LCYJ202336the Scientific and Technological Achievements Promotion Project of Wuxi Municipal Health Commission Project Program,No.T202336+1 种基金the Hospital Management Innovation Research Project of Jiangsu Hospital Association,No.JSYGY-3-2024-601Jiangsu Provincial Traditional Chinese Medicine Science and Technology Development Plan Project,No.MS2024063.
文摘BACKGROUND Studies have shown that locomotive syndrome(LS)is significantly correlated with adverse outcomes,such as decreased self-care abilities,fractures,and increased mortality.Subthreshold depression(StD)is considered an independent predictor of clinical depression,regarded as its prodromal stage,and even linked to increased mortality risk.Limited research has addressed the prevalence and relationship between LS and StD in elderly cancer patients.Understanding the prevalence of LS and StD among elderly cancer patients and elucidating their relationship will provide evidence to support the development of targeted interventions,thereby improving health outcomes in this population.AIM To investigate the relationship between musculoskeletal system function and predepressive states in elderly cancer patients.METHODS A convenience sampling method was employed to recruit 500 elderly cancer patients undergoing follow-up visits at the Department of Oncology,Affiliated Hospital of Jiangnan University,from April 2024 to December 2024.Participants completed the general information questionnaire, the 25-question Geriatric Locomotive Function Scale, and theGeriatric Depression Scale-Short Form-15. Influencing factors were analyzed, and correlation analyses wereperformed.RESULTSA total of 483 elderly cancer patients successfully completed the study. The prevalence of LS and StD amongparticipants was 56.5% and 38.7%, respectively. Logistic regression analysis identified age, tumor metastasis,exercise habits, and the presence of StD as significant risk factors for LS in elderly cancer patients. Additionally,having three or more chronic diseases and LS were significant predictors for developing StD. Spearman’s correlationanalysis revealed a significant positive correlation between LS and StD (r = 0.424, P < 0.001).CONCLUSIONElderly cancer patients exhibit a high prevalence of LS and StD, conditions which are positively correlated andmutually influential. Thus, it is critical to monitor and address pre-depressive states while evaluating and managingmotor function in this population.
基金supported by the National Natural Science Foundation of China(No.52001106)the Natural Science Foundation of Hebei Province,China(No.E2022202158).
文摘The microstructure and mechanical properties of 2524 Al alloy after quenching in liquid nitrogen(LN_(2))were investigated by TEM and compared with those of cold water quenching.The results show that the LN_(2) quenching process effectively induces the formation of dislocation loops.These loops become large and unevenly distribute after aging for 15 min.Furthermore,such loops become rapidly immobilized by the precipitation of coarse S phases after 1 h aging.The alloy quenched in LN_(2) demonstrates superior peak hardness and displays a more rapid response to subsequent aging treatments compared with the cold water-quenched one.Despite the short aging time,LN_(2)-quenched sample achieves tensile strength of 488 MPa.This enhanced strength is attributed to the strengthening effect of numerous finely dispersed Guinier-Preston-Bagaryatsky(GPB)zones,in conjunction with the inhomogeneous formation of S phase on the dislocation loops.