The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconci...The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconcile this contradiction,two Mg-0.1Sc-0.1Y-0.1Ag anodes with different residual strain distribution through extrusion with/without annealing are fabricated.The results indicate that annealing can significantly lessen the“pseudo-anode”regions,thereby changing the dissolution mode of the matrix and achieving an effective dissolution during discharge.Additionally,p-type semiconductor characteristic of discharge productfilm could suppress the self-corrosion reaction without reducing the polarization of anode.The magnesium-air battery utilizing annealed Mg-0.1Sc-0.1Y-0.1Ag as anode achieves a synergistic improvement in specific capacity(1388.89 mA h g^(-1))and energy density(1960.42 mW h g^(-1)).This anode modification method accelerates the advancement of high efficiency and long lifespan magnesium-air batteries,offering renewable and cost-effective energy solutions for electronics and emergency equipment.展开更多
Systems hosting flat bands offer a powerful platform for exploring strong correlation physics.Theoretically,topological degeneracy arising in systems with non-trivial topological orders on periodic manifolds of non-ze...Systems hosting flat bands offer a powerful platform for exploring strong correlation physics.Theoretically,topological degeneracy arising in systems with non-trivial topological orders on periodic manifolds of non-zero genus can generate ideal flat bands.However,experimental realization of such geometrically engineered systems is very difficult.In this work,we demonstrate that flat planes with strategically patterned hole defects can engineer ideal flat bands.We construct two families of models:singular flat band systems where degeneracy is stabilized by non-contractible loop excitations tied to hole defects and perfectly nested van Hove systems where degeneracy arises from line excitations in momentum space.These models circumvent the need for exotic manifolds while retaining the essential features of topological flat bands.By directly linking defect engineering to degeneracy mechanisms,our results establish a scalable framework for experimentally accessible flat band design.展开更多
A modified three-dimensional turbulence parameterization scheme,implemented by replacing the conventional eddydiffusivity formulation with the H-gradient model,has shown good performance in representing the subgrid-sc...A modified three-dimensional turbulence parameterization scheme,implemented by replacing the conventional eddydiffusivity formulation with the H-gradient model,has shown good performance in representing the subgrid-scale(SGS)turbulent fluxes associated with convective clouds in idealized tropical cyclone(TC)simulations.To evaluate the capability of the modified scheme in simulating real TCs,two sets of simulations of TC Soudelor(2015),one with the modified scheme and the other with the original scheme,are conducted.Comparisons with observations and coarse-grained results from large eddy simulation benchmarks demonstrate that the modified scheme improves the forecasting of the intensity and structure,as well as the SGS turbulent fluxes of Soudelor.Using the modified turbulence scheme,a TC with stronger intensity,smaller size,a shallower but stronger inflow layer,and a more intense but less inclined convective updraft is simulated.The rapid intensification process and secondary eyewall features can also be captured better by the modified scheme.By analyzing the mechanism by which turbulent transport impacts the intensity and structure of TCs,it is shown that accurately representing the turbulent transport associated with convective clouds above the planetary boundary layer helps to initiate the TC spin-up process.展开更多
Zn-Al eutectoid alloy(ZA22)has ultra-high damping property,but its mechanical properties are still relatively low.In order to simultaneously improve the tensile strength and plasticity,a novel Al matrix composite inoc...Zn-Al eutectoid alloy(ZA22)has ultra-high damping property,but its mechanical properties are still relatively low.In order to simultaneously improve the tensile strength and plasticity,a novel Al matrix composite inoculant containing in-situ formed Al_(2)O_(3) and Al3Zr particles was designed and used to reinforce the ZA22 alloy.The microstructure of the ZA22 alloy was significantly refined.Fine Al_(2)O_(3) particles were uniformly distributed in theαphase and the lamellar eutectoid structure,whereas Al3Zr particles were distributed in theαphase and at theα/ηinterface.Property tests showed that the tensile mechanical properties of the reinforced ZA22 alloys were significantly improved.The maximum tensile strength and elongation reached 355 MPa and 7.62%,which were 1.50 and 1.89 times those of the original ZA22 alloy,respectively.The increase in mechanical properties is attributed to the multiple strengthening and toughening factors constructed in the refined microstructure.展开更多
Ga_(2)O_(3) is considered a potential anode material for next-generation lithium-ion batteries due to its high theoretical capacity and unique self-healing capability.To develop a novel preparation method and in-depth...Ga_(2)O_(3) is considered a potential anode material for next-generation lithium-ion batteries due to its high theoretical capacity and unique self-healing capability.To develop a novel preparation method and in-depth understanding of the electrochemical reaction mechanism of Ga_(2)O_(3),a brand-new liquid-liquid dealloying strategy was exploited to construct porous α-Ga_(2)O_(3) nanowire networks.Profiting from the well-designed porous structure,the material exhibits impressive cycling stability of a reversible capacity of 603.9 mA·h/g after 200 cycles at 1000 mA/g and a capacity retention of 125.2 mA·h/g after 100 cycles at 0.5C when assembling to Ga_(2)O_(3)//LiFePO_(4) full cells.The lithiation/delithiation reaction mechanism of the porous Ga_(2)O_(3) anodes is further revealed by ex-situ Raman,XRD,TEM measurements,and density functional theoretical(DFT)calculations,which establishes a correlation between the electrochemical performance and the phase transition fromα-Ga_(2)O_(3) to β-Ga_(2)O_(3) during cycling.展开更多
A self-standing dual-electric field synergistic[TiO_(2)/polyvinylidene fluoride(PVDF)]//[g-C3 N4 tube/PVDF]Janus nanofibres(named as[TP]//[CTP]JNs)S-scheme heterostructure piezoelectric photocatalyst is designed and c...A self-standing dual-electric field synergistic[TiO_(2)/polyvinylidene fluoride(PVDF)]//[g-C3 N4 tube/PVDF]Janus nanofibres(named as[TP]//[CTP]JNs)S-scheme heterostructure piezoelectric photocatalyst is designed and constructed via conjugative electrospinning.Dual-fields of built-in electric fields supplied by S-scheme heterostructure and piezoelectric field formed by PVDF jointly boost separation and transfer of photo-induced charges.As a case study,piezoelectric photocatalytic efficiency of[TP]//[CTP]JNs for tetracycline hydrochloride(TCH)under ultrasonic united with simulated sunlight illumination is 93.35%(40 min),which is 1.39 times of the photocatalytic efficiency(light illumination only)and 5.32 times of piezoelectric catalytic efficiency(applying ultrasonic only),proving the advantages of the synergistic effect of piezoelectric catalysis and photocatalysis on contaminant degradation.The dynamic behaviors of photocatalysis and photo-generated charges are deeply revealed through fs-TA and TRPL decay spectra,and the degradation pathways of antibiotics are reasonably speculated by combining LCMS spectra with Fukui index.By the degradation ability,COMSOL simulation and DFT calculation,the structural advantage of Janus nanofibers is fully verified,and S-scheme charge transfer mechanism is confirmed by combining a series of sound ample experiments with theoretical calculations.Additionally,the construction mechanism of Janus nanofibers is proposed,and corresponding construction technique is established.展开更多
To study the relationships between rock mass crack propagation and damage and confining pressure under blast impact loading during straight-hole cut blasting,tests were performed under different confining pressures.Th...To study the relationships between rock mass crack propagation and damage and confining pressure under blast impact loading during straight-hole cut blasting,tests were performed under different confining pressures.Then,the characteristics of rock mass crack development were analyzed,and the pressure resistance values of core samples before and after blasting were compared to study the trends of rock mass damage.Moreover,a three-dimensional numerical simulation model was established by LS-DYNA to analyze the stress wave propagation,cavity shape and crack propagation characteristics under different confining pressures.The propagation of rock blasting cracks is negatively correlated with the confining pressure.The greater the confining pressure,the shorter the crack development time.Additionally,the crack width is reduced from 0.4-1.7 to 0.04-1.4 mm,and the length is shortened from 280 to 120 mm.A comparison of the compressive strength revealed that blasting reduces the compressive strength of the rock mass.The greater the distance from the explosion source,the lower the degree of strength attenuation.An increase in the confining pressure can inhibit strength attenuation.Numerical simulations revealed that under the same confining pressure,the stress first peaks at the bottom of the blast hole.The greater the confining pressure,the longer the stress peak duration,the smaller the cavity volume,and the shorter the crack propagation length and depth.Under a confining pressure of 4 MPa,the longest crack was only 154.5 mm in length and 102 mm in depth.The research results provide a scientific basis for controlling rock damage and optimizing design in the excavation of deep rock roadways by blasting.展开更多
The microstructural characterization,corrosion behavior and tensile properties of the extruded lean Mg−1Bi−0.5Sn−0.5In(wt.%)alloy were investigated through scanning electron microscopy(SEM),electron backscatter diffra...The microstructural characterization,corrosion behavior and tensile properties of the extruded lean Mg−1Bi−0.5Sn−0.5In(wt.%)alloy were investigated through scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),X-ray photoelectron spectroscopy(XPS),electrochemical measurements and tensile tests.The results reveal that a microstructure consisting of dynamically recrystallized and deformed grains is obtained.Notably,the investigated alloy exhibits excellent strength−ductility synergy,with tensile yield strength(TYS),ultimate tensile strength(UTS)and elongation(EL)of 254.8 MPa,315.4 MPa,and 25.3%,respectively.Furthermore,in 3.5 wt.%NaCl solution,with the increase of immersion time,the dominant corrosion mechanism of the studied alloy transforms from pitting corrosion to filiform corrosion.After the immersion for 24 h,a composite oxide film(SnO2−Bi2O3−In2O3)is formed,which delays the corrosion process,and the corrosion rate(PH=1.53 mm/a)is finally stabilized.展开更多
BACKGROUND Studies have shown that locomotive syndrome(LS)is significantly correlated with adverse outcomes,such as decreased self-care abilities,fractures,and increased mortality.Subthreshold depression(StD)is consid...BACKGROUND Studies have shown that locomotive syndrome(LS)is significantly correlated with adverse outcomes,such as decreased self-care abilities,fractures,and increased mortality.Subthreshold depression(StD)is considered an independent predictor of clinical depression,regarded as its prodromal stage,and even linked to increased mortality risk.Limited research has addressed the prevalence and relationship between LS and StD in elderly cancer patients.Understanding the prevalence of LS and StD among elderly cancer patients and elucidating their relationship will provide evidence to support the development of targeted interventions,thereby improving health outcomes in this population.AIM To investigate the relationship between musculoskeletal system function and predepressive states in elderly cancer patients.METHODS A convenience sampling method was employed to recruit 500 elderly cancer patients undergoing follow-up visits at the Department of Oncology,Affiliated Hospital of Jiangnan University,from April 2024 to December 2024.Participants completed the general information questionnaire, the 25-question Geriatric Locomotive Function Scale, and theGeriatric Depression Scale-Short Form-15. Influencing factors were analyzed, and correlation analyses wereperformed.RESULTSA total of 483 elderly cancer patients successfully completed the study. The prevalence of LS and StD amongparticipants was 56.5% and 38.7%, respectively. Logistic regression analysis identified age, tumor metastasis,exercise habits, and the presence of StD as significant risk factors for LS in elderly cancer patients. Additionally,having three or more chronic diseases and LS were significant predictors for developing StD. Spearman’s correlationanalysis revealed a significant positive correlation between LS and StD (r = 0.424, P < 0.001).CONCLUSIONElderly cancer patients exhibit a high prevalence of LS and StD, conditions which are positively correlated andmutually influential. Thus, it is critical to monitor and address pre-depressive states while evaluating and managingmotor function in this population.展开更多
A novel precipitate-free Mg-0.1Sn anode with a homogeneous equal-axis grain structure was developed and rolled successfully at 573 K.Electrochemical test results indicate that the Mg-0.1Sn alloy exhibits enhanced anod...A novel precipitate-free Mg-0.1Sn anode with a homogeneous equal-axis grain structure was developed and rolled successfully at 573 K.Electrochemical test results indicate that the Mg-0.1Sn alloy exhibits enhanced anode dissolution kinetics.A Mg-air battery prepared using this anode exhibits a cell voltage of 1.626 V at 0.5 mA/cm^(2),reasonable anodic efficiency of 58.17%,and good specific energy of 1730.96 mW·h/g at 10 mA/cm^(2).This performance is attributed to the effective reactive anode surface,the suppressed chunk effect,and weak self-corrosion owing to the homogeneous basal texture.展开更多
The microstructure and mechanical properties of 2524 Al alloy after quenching in liquid nitrogen(LN_(2))were investigated by TEM and compared with those of cold water quenching.The results show that the LN_(2) quenchi...The microstructure and mechanical properties of 2524 Al alloy after quenching in liquid nitrogen(LN_(2))were investigated by TEM and compared with those of cold water quenching.The results show that the LN_(2) quenching process effectively induces the formation of dislocation loops.These loops become large and unevenly distribute after aging for 15 min.Furthermore,such loops become rapidly immobilized by the precipitation of coarse S phases after 1 h aging.The alloy quenched in LN_(2) demonstrates superior peak hardness and displays a more rapid response to subsequent aging treatments compared with the cold water-quenched one.Despite the short aging time,LN_(2)-quenched sample achieves tensile strength of 488 MPa.This enhanced strength is attributed to the strengthening effect of numerous finely dispersed Guinier-Preston-Bagaryatsky(GPB)zones,in conjunction with the inhomogeneous formation of S phase on the dislocation loops.展开更多
The effects of internals on liquid mixing and gas-liquid mass transfer have rarely been investigated in bubble columns,and the commonly used measurement method overestimates significantly overall gas holdup.Firstly,ga...The effects of internals on liquid mixing and gas-liquid mass transfer have rarely been investigated in bubble columns,and the commonly used measurement method overestimates significantly overall gas holdup.Firstly,gas holdup measurement method is improved by conducting multi-point liquid level measurement and using net fluid volume instead of bed volume to calculate gas holdup.Then,a stable conductivity method for liquid macromixing has been established by shielding large bubbles using#16nylon mesh.Subsequently,the influences of internal coverage(=12.6%,18.9% and 25.1%) on macroscopic fluid dynamics in a bubble column with a free wall area are systematically investigated.It is found that the presence of internals has a notable effect on macroscopic fluid dynamics.The overall gas holdup and gas-liquid volumetric mass transfer coefficient decrease,and the macromixing time decreases with the increase of internal cross-sectional area coverage.These are mainly caused by the uneven distribution of airflow due to the low resistance in the free wall area.This design makes maintenance easier,but in reality,the reactor performance has decreased.Further improvements will be made to the reactor performance based on such a configuration through flow guidance using baffles.展开更多
[Objectives]This study was condcuted to investigate the formula optimization and nutritional components of Brassica vegetable juice beverage.[Methods]Brassica was selected as the raw material to optimize the formula o...[Objectives]This study was condcuted to investigate the formula optimization and nutritional components of Brassica vegetable juice beverage.[Methods]Brassica was selected as the raw material to optimize the formula of the vegetable juice beverage.The vitamin C content and flavor components were analyzed in both sterilized and non-sterilized samples.[Results]Based on water,the optimal formula for the Brassica vegetable juice beverage was determined as:20%Brassica juice,5%erythritol,and 0.1%citric acid.The highest vitamin C content was observed in unsterilized samples(12.167 mg/100 g sample),followed by samples sterilized at 71℃for 15 s(9.864 mg/100 g sample).The most significant loss of vitamin C occurred under sterilization conditions of 68℃for 30 min.GC-MS analysis detected a total of seven volatile components in the Brassica vegetable juice beverage,including siloxanes,alcohols,aldehydes,and methoxyphenyl oxime.Before sterilization,siloxane compounds(D3,D4,D5)showed the highest content in the Brassica vegetable juice,accounting for 63.606%,followed by methoxyphenyl oxime at 24.802%.After sterilization,siloxane compounds(D3,D4,D5)exhibited the highest content reaching 81.963%,while methoxyphenyl oxime taking the second place decreased to 14.276%.[Conclusions]This study provides new insights and methodologies for the development and utilization of Brassica crops and other agricultural products,offering a theoretical foundation for accelerating the integrated development of Brassica processing and sales.展开更多
A cylindrical chamber with a rotating bottom holds significant potential for application in cell culture bioreactors due to its ability to generate more stable swirling flows.In order to control vortex breakdown withi...A cylindrical chamber with a rotating bottom holds significant potential for application in cell culture bioreactors due to its ability to generate more stable swirling flows.In order to control vortex breakdown within the chamber,this study first establishes a computational fluid dynamics simulation coupled with the level set method.Verified by experimental results in literature,this method accurately simulates the position and shape of vortex breakdown,and also predicts the critical Reynolds numbers for the appearance and detachment of vortex breakdown bubbles from the center.Additionally,it precisely captures the gas-liquid interface and depicts the vortex breakdown phenomenon in the air above the liquid for the first time.Finally,it predicts the impact of physical property of gas-liquid systems on vortex breakdown in response to significant changes in viscosity of microbial process systems.展开更多
Extreme weather events have been identified as the top global risk for the upcoming decade,according to the Global Risk Report 2025.Between July and September 2024,four tropical cyclones with extreme characteristics m...Extreme weather events have been identified as the top global risk for the upcoming decade,according to the Global Risk Report 2025.Between July and September 2024,four tropical cyclones with extreme characteristics made landfall in China,highlighting the potential impacts of climate change on tropical cyclone activity.Super Typhoon Gaemi made landfall in Taiwan and Fujian provinces,setting record-breaking daily rainfall at 14 meteorological stations in Jiangxi,Hunan,and Liaoning provinces.As the strongest typhoon to make landfall in China during autumn,Yagi maintained super typhoon intensity when making landfall in Hainan,Guangdong provinces in China,and Quang Ninh Province in Vietnam.Typhoon Bebinca and Tropical Storm Pulasan made consecutive landfalls in Shanghai within four days,with Bebinca being the strongest typhoon to strike Shanghai and Jiangsu Province since 1949.The World Weather Attribution report indicates that,due to climate change,rainfall events like those from Super Typhoon Gaemi have become more frequent,now occurring every 20 years in the northern Philippines,every 5 years in Taiwan Province,and every 100 years in Hunan Province.In Taiwan and Hunan provinces,climate change has increased rainfall by 14%and 9%,respectively.It is suggested that exploring how climate change influences the extreme events of landfalling typhoons is an important area for future research.展开更多
This study investigates the size characteristics and related temporal variations of tropical cyclones(TCs)over the Western North Pacific(WNP)and those affecting East China(EC)using Joint Typhoon Warning Center(JTWC)da...This study investigates the size characteristics and related temporal variations of tropical cyclones(TCs)over the Western North Pacific(WNP)and those affecting East China(EC)using Joint Typhoon Warning Center(JTWC)data during 2001-20.The average size of EC TCs is found to be similar to that over the WNP.Furthermore,the annual maximum lifetime maximum size(LMS)of EC TCs shows a statistically significant increasing trend,implying a more severe impact on the EC region.Composite analyses of intensity and size variation over the entire lifetime of TCs,before and after re-curvature,and before and after rapid intensification(RI),show that there are significant differences between them in some key areas:(1)The intensity begins to rapidly decrease after the TC has reached its highest intensity,but the size remains quasi-constant;(2)When a TC recurves south of 15°N or north of 30°N,the variation trend for both intensity and size are broadly similar before and after curvature,but their variation trends are opposite when the recurvature occurs between 15°-30°N;(3)After RI,the intensity reaches its peak value within 24 h,whereas the size reaches its LMS after30-48 h.A significant correlation is also found between the rate of change in intensity and that of size during the development stage,with a correlation coefficient of 0.67 and 0.73 for TCs in the WNP and EC,respectively.However,no significant correlation exists during the weakening stage.展开更多
基金the National Natural Science:Foundation of China(52375370)the Open Project of Salt Lake Chemical Engineering Research Complex,Qinghai University(2023-DXSSKF-Z02)+2 种基金the Nat-ural Science Foundation of Shanxi(202103021224049)GDAS Projects of International cooperation platform of Sci-ence and Technology(2022GDASZH-2022010203-003)Guangdong province Science and Technology Plan Projects(2023B1212060045).
文摘The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconcile this contradiction,two Mg-0.1Sc-0.1Y-0.1Ag anodes with different residual strain distribution through extrusion with/without annealing are fabricated.The results indicate that annealing can significantly lessen the“pseudo-anode”regions,thereby changing the dissolution mode of the matrix and achieving an effective dissolution during discharge.Additionally,p-type semiconductor characteristic of discharge productfilm could suppress the self-corrosion reaction without reducing the polarization of anode.The magnesium-air battery utilizing annealed Mg-0.1Sc-0.1Y-0.1Ag as anode achieves a synergistic improvement in specific capacity(1388.89 mA h g^(-1))and energy density(1960.42 mW h g^(-1)).This anode modification method accelerates the advancement of high efficiency and long lifespan magnesium-air batteries,offering renewable and cost-effective energy solutions for electronics and emergency equipment.
基金supported by the Ministry of Science and Technology(Grant No.2022YFA1403901)the National Natural Science Foundation of China(Grant Nos.12494594,11888101,12174428,and 12504192)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB28000000)the New Cornerstone Investigator Program,the Chinese Academy of Sciences through the Youth Innovation Promotion Association(Grant No.2022YSBR-048)the Shanghai Science and Technology Innovation Action Plan(Grant No.24LZ1400800).
文摘Systems hosting flat bands offer a powerful platform for exploring strong correlation physics.Theoretically,topological degeneracy arising in systems with non-trivial topological orders on periodic manifolds of non-zero genus can generate ideal flat bands.However,experimental realization of such geometrically engineered systems is very difficult.In this work,we demonstrate that flat planes with strategically patterned hole defects can engineer ideal flat bands.We construct two families of models:singular flat band systems where degeneracy is stabilized by non-contractible loop excitations tied to hole defects and perfectly nested van Hove systems where degeneracy arises from line excitations in momentum space.These models circumvent the need for exotic manifolds while retaining the essential features of topological flat bands.By directly linking defect engineering to degeneracy mechanisms,our results establish a scalable framework for experimentally accessible flat band design.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFC3000803)the National Natural Science Foundation of China(Grant Nos.42375149,41975133 and 42205070)the Shanghai Pujiang Program(Grant No.22PJ1415900)。
文摘A modified three-dimensional turbulence parameterization scheme,implemented by replacing the conventional eddydiffusivity formulation with the H-gradient model,has shown good performance in representing the subgrid-scale(SGS)turbulent fluxes associated with convective clouds in idealized tropical cyclone(TC)simulations.To evaluate the capability of the modified scheme in simulating real TCs,two sets of simulations of TC Soudelor(2015),one with the modified scheme and the other with the original scheme,are conducted.Comparisons with observations and coarse-grained results from large eddy simulation benchmarks demonstrate that the modified scheme improves the forecasting of the intensity and structure,as well as the SGS turbulent fluxes of Soudelor.Using the modified turbulence scheme,a TC with stronger intensity,smaller size,a shallower but stronger inflow layer,and a more intense but less inclined convective updraft is simulated.The rapid intensification process and secondary eyewall features can also be captured better by the modified scheme.By analyzing the mechanism by which turbulent transport impacts the intensity and structure of TCs,it is shown that accurately representing the turbulent transport associated with convective clouds above the planetary boundary layer helps to initiate the TC spin-up process.
基金supported by the Foundation Strengthening Program of China(No.2019-JCJQ-ZD-142-00)the Natural Science Foundation of Hebei Province,China(No.E2021202017)the Foundation of Guangdong Academy of Sciences,China(No.2021GDASYL-20210102002)。
文摘Zn-Al eutectoid alloy(ZA22)has ultra-high damping property,but its mechanical properties are still relatively low.In order to simultaneously improve the tensile strength and plasticity,a novel Al matrix composite inoculant containing in-situ formed Al_(2)O_(3) and Al3Zr particles was designed and used to reinforce the ZA22 alloy.The microstructure of the ZA22 alloy was significantly refined.Fine Al_(2)O_(3) particles were uniformly distributed in theαphase and the lamellar eutectoid structure,whereas Al3Zr particles were distributed in theαphase and at theα/ηinterface.Property tests showed that the tensile mechanical properties of the reinforced ZA22 alloys were significantly improved.The maximum tensile strength and elongation reached 355 MPa and 7.62%,which were 1.50 and 1.89 times those of the original ZA22 alloy,respectively.The increase in mechanical properties is attributed to the multiple strengthening and toughening factors constructed in the refined microstructure.
基金the Natural Science Foundation of Hebei Province,China(No.E2023202253)Hebei Higher Education Teaching Reform Research and Practice Project,China(No.2021GJJG050).
文摘Ga_(2)O_(3) is considered a potential anode material for next-generation lithium-ion batteries due to its high theoretical capacity and unique self-healing capability.To develop a novel preparation method and in-depth understanding of the electrochemical reaction mechanism of Ga_(2)O_(3),a brand-new liquid-liquid dealloying strategy was exploited to construct porous α-Ga_(2)O_(3) nanowire networks.Profiting from the well-designed porous structure,the material exhibits impressive cycling stability of a reversible capacity of 603.9 mA·h/g after 200 cycles at 1000 mA/g and a capacity retention of 125.2 mA·h/g after 100 cycles at 0.5C when assembling to Ga_(2)O_(3)//LiFePO_(4) full cells.The lithiation/delithiation reaction mechanism of the porous Ga_(2)O_(3) anodes is further revealed by ex-situ Raman,XRD,TEM measurements,and density functional theoretical(DFT)calculations,which establishes a correlation between the electrochemical performance and the phase transition fromα-Ga_(2)O_(3) to β-Ga_(2)O_(3) during cycling.
基金supported by the National Natural Science Foundation of China(No.52173155)the Natural Science Foundation of Jilin Province(Nos.YDZJ202101ZYTS130,YDZJ202101ZYTS059)the Natural Science Foundation of Chongqing(Nos.cstc2021jcyj-msxmX1076,cstc2021jcyj-msxmX0798).
文摘A self-standing dual-electric field synergistic[TiO_(2)/polyvinylidene fluoride(PVDF)]//[g-C3 N4 tube/PVDF]Janus nanofibres(named as[TP]//[CTP]JNs)S-scheme heterostructure piezoelectric photocatalyst is designed and constructed via conjugative electrospinning.Dual-fields of built-in electric fields supplied by S-scheme heterostructure and piezoelectric field formed by PVDF jointly boost separation and transfer of photo-induced charges.As a case study,piezoelectric photocatalytic efficiency of[TP]//[CTP]JNs for tetracycline hydrochloride(TCH)under ultrasonic united with simulated sunlight illumination is 93.35%(40 min),which is 1.39 times of the photocatalytic efficiency(light illumination only)and 5.32 times of piezoelectric catalytic efficiency(applying ultrasonic only),proving the advantages of the synergistic effect of piezoelectric catalysis and photocatalysis on contaminant degradation.The dynamic behaviors of photocatalysis and photo-generated charges are deeply revealed through fs-TA and TRPL decay spectra,and the degradation pathways of antibiotics are reasonably speculated by combining LCMS spectra with Fukui index.By the degradation ability,COMSOL simulation and DFT calculation,the structural advantage of Janus nanofibers is fully verified,and S-scheme charge transfer mechanism is confirmed by combining a series of sound ample experiments with theoretical calculations.Additionally,the construction mechanism of Janus nanofibers is proposed,and corresponding construction technique is established.
基金The National Natural Science Foundation of China(No.51874189)the Shandong Provincial Natural Science Foundation(Nos.ZR2023ME106 and ZR2023ME055)the Open Fund Project of the Engineering Research Center of the Ministry of Education for Mining Underground Engineering(No.JYBGCZX2021102).
文摘To study the relationships between rock mass crack propagation and damage and confining pressure under blast impact loading during straight-hole cut blasting,tests were performed under different confining pressures.Then,the characteristics of rock mass crack development were analyzed,and the pressure resistance values of core samples before and after blasting were compared to study the trends of rock mass damage.Moreover,a three-dimensional numerical simulation model was established by LS-DYNA to analyze the stress wave propagation,cavity shape and crack propagation characteristics under different confining pressures.The propagation of rock blasting cracks is negatively correlated with the confining pressure.The greater the confining pressure,the shorter the crack development time.Additionally,the crack width is reduced from 0.4-1.7 to 0.04-1.4 mm,and the length is shortened from 280 to 120 mm.A comparison of the compressive strength revealed that blasting reduces the compressive strength of the rock mass.The greater the distance from the explosion source,the lower the degree of strength attenuation.An increase in the confining pressure can inhibit strength attenuation.Numerical simulations revealed that under the same confining pressure,the stress first peaks at the bottom of the blast hole.The greater the confining pressure,the longer the stress peak duration,the smaller the cavity volume,and the shorter the crack propagation length and depth.Under a confining pressure of 4 MPa,the longest crack was only 154.5 mm in length and 102 mm in depth.The research results provide a scientific basis for controlling rock damage and optimizing design in the excavation of deep rock roadways by blasting.
基金supported by the National Natural Science Foundation of China(No.51901153)the Natural Science Foundation of Shanxi,China(No.202103021224049)+1 种基金the Shanxi Zhejiang University New Materials and Chemical Research Institute Scientific Research Project,China(No.2022SX-TD025)the Open Project of Salt Lake Chemical Engineering Research Complex,Qinghai University,China(No.2023-DXSSKF-Z02).
文摘The microstructural characterization,corrosion behavior and tensile properties of the extruded lean Mg−1Bi−0.5Sn−0.5In(wt.%)alloy were investigated through scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),X-ray photoelectron spectroscopy(XPS),electrochemical measurements and tensile tests.The results reveal that a microstructure consisting of dynamically recrystallized and deformed grains is obtained.Notably,the investigated alloy exhibits excellent strength−ductility synergy,with tensile yield strength(TYS),ultimate tensile strength(UTS)and elongation(EL)of 254.8 MPa,315.4 MPa,and 25.3%,respectively.Furthermore,in 3.5 wt.%NaCl solution,with the increase of immersion time,the dominant corrosion mechanism of the studied alloy transforms from pitting corrosion to filiform corrosion.After the immersion for 24 h,a composite oxide film(SnO2−Bi2O3−In2O3)is formed,which delays the corrosion process,and the corrosion rate(PH=1.53 mm/a)is finally stabilized.
基金Supported by Wuxi Institute of Translational Medicine Project Program,No.LCYJ202336the Scientific and Technological Achievements Promotion Project of Wuxi Municipal Health Commission Project Program,No.T202336+1 种基金the Hospital Management Innovation Research Project of Jiangsu Hospital Association,No.JSYGY-3-2024-601Jiangsu Provincial Traditional Chinese Medicine Science and Technology Development Plan Project,No.MS2024063.
文摘BACKGROUND Studies have shown that locomotive syndrome(LS)is significantly correlated with adverse outcomes,such as decreased self-care abilities,fractures,and increased mortality.Subthreshold depression(StD)is considered an independent predictor of clinical depression,regarded as its prodromal stage,and even linked to increased mortality risk.Limited research has addressed the prevalence and relationship between LS and StD in elderly cancer patients.Understanding the prevalence of LS and StD among elderly cancer patients and elucidating their relationship will provide evidence to support the development of targeted interventions,thereby improving health outcomes in this population.AIM To investigate the relationship between musculoskeletal system function and predepressive states in elderly cancer patients.METHODS A convenience sampling method was employed to recruit 500 elderly cancer patients undergoing follow-up visits at the Department of Oncology,Affiliated Hospital of Jiangnan University,from April 2024 to December 2024.Participants completed the general information questionnaire, the 25-question Geriatric Locomotive Function Scale, and theGeriatric Depression Scale-Short Form-15. Influencing factors were analyzed, and correlation analyses wereperformed.RESULTSA total of 483 elderly cancer patients successfully completed the study. The prevalence of LS and StD amongparticipants was 56.5% and 38.7%, respectively. Logistic regression analysis identified age, tumor metastasis,exercise habits, and the presence of StD as significant risk factors for LS in elderly cancer patients. Additionally,having three or more chronic diseases and LS were significant predictors for developing StD. Spearman’s correlationanalysis revealed a significant positive correlation between LS and StD (r = 0.424, P < 0.001).CONCLUSIONElderly cancer patients exhibit a high prevalence of LS and StD, conditions which are positively correlated andmutually influential. Thus, it is critical to monitor and address pre-depressive states while evaluating and managingmotor function in this population.
基金partially supported by the National Natural Science Foundation of China(No.51901153)Shanxi Scholarship Council of China(No.2019032)+1 种基金the Natural Science Foundation of Shanxi,China(No.202103021224049)the Shanxi Zhejiang University New Materials and Chemical Research Institute Scientific Research Project,China(No.2022SX-TD025)。
文摘A novel precipitate-free Mg-0.1Sn anode with a homogeneous equal-axis grain structure was developed and rolled successfully at 573 K.Electrochemical test results indicate that the Mg-0.1Sn alloy exhibits enhanced anode dissolution kinetics.A Mg-air battery prepared using this anode exhibits a cell voltage of 1.626 V at 0.5 mA/cm^(2),reasonable anodic efficiency of 58.17%,and good specific energy of 1730.96 mW·h/g at 10 mA/cm^(2).This performance is attributed to the effective reactive anode surface,the suppressed chunk effect,and weak self-corrosion owing to the homogeneous basal texture.
基金supported by the National Natural Science Foundation of China(No.52001106)the Natural Science Foundation of Hebei Province,China(No.E2022202158).
文摘The microstructure and mechanical properties of 2524 Al alloy after quenching in liquid nitrogen(LN_(2))were investigated by TEM and compared with those of cold water quenching.The results show that the LN_(2) quenching process effectively induces the formation of dislocation loops.These loops become large and unevenly distribute after aging for 15 min.Furthermore,such loops become rapidly immobilized by the precipitation of coarse S phases after 1 h aging.The alloy quenched in LN_(2) demonstrates superior peak hardness and displays a more rapid response to subsequent aging treatments compared with the cold water-quenched one.Despite the short aging time,LN_(2)-quenched sample achieves tensile strength of 488 MPa.This enhanced strength is attributed to the strengthening effect of numerous finely dispersed Guinier-Preston-Bagaryatsky(GPB)zones,in conjunction with the inhomogeneous formation of S phase on the dislocation loops.
基金National Natural Science Foundation of China(22178228,22378271)are gratefully acknowledged。
文摘The effects of internals on liquid mixing and gas-liquid mass transfer have rarely been investigated in bubble columns,and the commonly used measurement method overestimates significantly overall gas holdup.Firstly,gas holdup measurement method is improved by conducting multi-point liquid level measurement and using net fluid volume instead of bed volume to calculate gas holdup.Then,a stable conductivity method for liquid macromixing has been established by shielding large bubbles using#16nylon mesh.Subsequently,the influences of internal coverage(=12.6%,18.9% and 25.1%) on macroscopic fluid dynamics in a bubble column with a free wall area are systematically investigated.It is found that the presence of internals has a notable effect on macroscopic fluid dynamics.The overall gas holdup and gas-liquid volumetric mass transfer coefficient decrease,and the macromixing time decreases with the increase of internal cross-sectional area coverage.These are mainly caused by the uneven distribution of airflow due to the low resistance in the free wall area.This design makes maintenance easier,but in reality,the reactor performance has decreased.Further improvements will be made to the reactor performance based on such a configuration through flow guidance using baffles.
基金Supported by 2025 Horizontal Fund Project of Institute of Agricultural Products Processing and Nuclear Agricultural Technology,Hubei Academy of Agricultural Sciences(20120250022).
文摘[Objectives]This study was condcuted to investigate the formula optimization and nutritional components of Brassica vegetable juice beverage.[Methods]Brassica was selected as the raw material to optimize the formula of the vegetable juice beverage.The vitamin C content and flavor components were analyzed in both sterilized and non-sterilized samples.[Results]Based on water,the optimal formula for the Brassica vegetable juice beverage was determined as:20%Brassica juice,5%erythritol,and 0.1%citric acid.The highest vitamin C content was observed in unsterilized samples(12.167 mg/100 g sample),followed by samples sterilized at 71℃for 15 s(9.864 mg/100 g sample).The most significant loss of vitamin C occurred under sterilization conditions of 68℃for 30 min.GC-MS analysis detected a total of seven volatile components in the Brassica vegetable juice beverage,including siloxanes,alcohols,aldehydes,and methoxyphenyl oxime.Before sterilization,siloxane compounds(D3,D4,D5)showed the highest content in the Brassica vegetable juice,accounting for 63.606%,followed by methoxyphenyl oxime at 24.802%.After sterilization,siloxane compounds(D3,D4,D5)exhibited the highest content reaching 81.963%,while methoxyphenyl oxime taking the second place decreased to 14.276%.[Conclusions]This study provides new insights and methodologies for the development and utilization of Brassica crops and other agricultural products,offering a theoretical foundation for accelerating the integrated development of Brassica processing and sales.
基金National Natural Science Foundation of China(22178228,22178326)
文摘A cylindrical chamber with a rotating bottom holds significant potential for application in cell culture bioreactors due to its ability to generate more stable swirling flows.In order to control vortex breakdown within the chamber,this study first establishes a computational fluid dynamics simulation coupled with the level set method.Verified by experimental results in literature,this method accurately simulates the position and shape of vortex breakdown,and also predicts the critical Reynolds numbers for the appearance and detachment of vortex breakdown bubbles from the center.Additionally,it precisely captures the gas-liquid interface and depicts the vortex breakdown phenomenon in the air above the liquid for the first time.Finally,it predicts the impact of physical property of gas-liquid systems on vortex breakdown in response to significant changes in viscosity of microbial process systems.
基金supported by the National Natural Science Foundation of China(Grant No.42192551)the National Key Research and Development Program(Grant No.2022YFC3004200)+1 种基金the Innovation and Development Special Program of the China Meteorological Administration(Grant No.CXFZ2024J006)the Special Fund Project of Basic Scientific Research Business Expenses of the Shanghai Typhoon Institute(Grant No.2024JB03).
文摘Extreme weather events have been identified as the top global risk for the upcoming decade,according to the Global Risk Report 2025.Between July and September 2024,four tropical cyclones with extreme characteristics made landfall in China,highlighting the potential impacts of climate change on tropical cyclone activity.Super Typhoon Gaemi made landfall in Taiwan and Fujian provinces,setting record-breaking daily rainfall at 14 meteorological stations in Jiangxi,Hunan,and Liaoning provinces.As the strongest typhoon to make landfall in China during autumn,Yagi maintained super typhoon intensity when making landfall in Hainan,Guangdong provinces in China,and Quang Ninh Province in Vietnam.Typhoon Bebinca and Tropical Storm Pulasan made consecutive landfalls in Shanghai within four days,with Bebinca being the strongest typhoon to strike Shanghai and Jiangsu Province since 1949.The World Weather Attribution report indicates that,due to climate change,rainfall events like those from Super Typhoon Gaemi have become more frequent,now occurring every 20 years in the northern Philippines,every 5 years in Taiwan Province,and every 100 years in Hunan Province.In Taiwan and Hunan provinces,climate change has increased rainfall by 14%and 9%,respectively.It is suggested that exploring how climate change influences the extreme events of landfalling typhoons is an important area for future research.
基金supported by National Natural Science Foundation of China under(Grant No.U2142206)the Shanghai Natural Science Foundation(21ZR1477300)+1 种基金Shanghai Science and Technology Commission Project(23DZ1204701)National Natural Science Foundation of China(Grant No.42075056)。
文摘This study investigates the size characteristics and related temporal variations of tropical cyclones(TCs)over the Western North Pacific(WNP)and those affecting East China(EC)using Joint Typhoon Warning Center(JTWC)data during 2001-20.The average size of EC TCs is found to be similar to that over the WNP.Furthermore,the annual maximum lifetime maximum size(LMS)of EC TCs shows a statistically significant increasing trend,implying a more severe impact on the EC region.Composite analyses of intensity and size variation over the entire lifetime of TCs,before and after re-curvature,and before and after rapid intensification(RI),show that there are significant differences between them in some key areas:(1)The intensity begins to rapidly decrease after the TC has reached its highest intensity,but the size remains quasi-constant;(2)When a TC recurves south of 15°N or north of 30°N,the variation trend for both intensity and size are broadly similar before and after curvature,but their variation trends are opposite when the recurvature occurs between 15°-30°N;(3)After RI,the intensity reaches its peak value within 24 h,whereas the size reaches its LMS after30-48 h.A significant correlation is also found between the rate of change in intensity and that of size during the development stage,with a correlation coefficient of 0.67 and 0.73 for TCs in the WNP and EC,respectively.However,no significant correlation exists during the weakening stage.