近几年,面向跨社交平台识别分布在不同社交网络上的同一用户依然是一个未解决的难题。该研究可以解决商业应用、资源整合、好友推荐等方面的相关问题。现有的算法如通过文本挖掘、单纯的用户属性无法取得良好的效果。提出CLA(Combined L...近几年,面向跨社交平台识别分布在不同社交网络上的同一用户依然是一个未解决的难题。该研究可以解决商业应用、资源整合、好友推荐等方面的相关问题。现有的算法如通过文本挖掘、单纯的用户属性无法取得良好的效果。提出CLA(Combined Link and Attribute)算法实现用户身份匹配。通过好友亲密度获得候选用户,结合基于网络结构的链接信息和用户属性信息进行用户匹配度计算。其中,链接信息相似度利用朋友匹配度计算得到。将该算法应用于多种社交网络,实验结果表明,该算法效果优越于传统的算法效果。展开更多
A great deal of ocean sensor observation data exists, for a wide range of marine disciplines, derived from in situ and remote observing platforms, in real-time, near-real-time and delayed mode. Ocean monitoring is rou...A great deal of ocean sensor observation data exists, for a wide range of marine disciplines, derived from in situ and remote observing platforms, in real-time, near-real-time and delayed mode. Ocean monitoring is routinely completed using sensors and instruments. Standardization is the key requirement for exchanging information about ocean sensors and sensor data and for comparing and combining information from different sensor networks. One or more sensors are often physically integrated into a single ocean ‘instrument' device, which often brings in many challenges related to diverse sensor data formats, parameters units, different spatiotemporal resolution, application domains, data quality and sensors protocols. To face these challenges requires the standardization efforts aiming at facilitating the so-called Sensor Web, which making it easy to provide public access to sensor data and metadata information. In this paper, a Marine Sensor Web, based on SOA and EDA and integrating the MBARI's PUCK protocol, IEEE 1451 and OGC SWE 2.0, is illustrated with a five-layer architecture. The Web Service layer and Event Process layer are illustrated in detail with an actual example. The demo study has demonstrated that a standard-based system can be built to access sensors and marine instruments distributed globally using common Web browsers for monitoring the environment and oceanic conditions besides marine sensor data on the Web, this framework of Marine Sensor Web can also play an important role in many other domains' information integration.展开更多
Ocean information management is of great importance as it has been employed in many areas of ocean science and technology. However, the developments of Ocean Information Systems(OISs) often suffer from low efficiency ...Ocean information management is of great importance as it has been employed in many areas of ocean science and technology. However, the developments of Ocean Information Systems(OISs) often suffer from low efficiency because of repetitive work and continuous modifications caused by dynamic requirements. In this paper, the basic requirements of OISs are analyzed first, and then a novel platform DPOI is proposed to improve development efficiency and enhance software quality of OISs by providing off-the-shelf resources. In the platform, the OIS is decomposed hierarchically into a set of modules, which can be reused in different system developments. These modules include the acquisition middleware and data loader that collect data from instruments and files respectively, the database that stores data consistently, the components that support fast application generation, the web services that make the data from distributed sources syntactical by use of predefined schemas and the configuration toolkit that enables software customization. With the assistance of the development platform, the software development needs no programming and the development procedure is thus accelerated greatly. We have applied the development platform in practical developments and evaluated its efficiency in several development practices and different development approaches. The results show that DPOI significantly improves development efficiency and software quality.展开更多
文摘近几年,面向跨社交平台识别分布在不同社交网络上的同一用户依然是一个未解决的难题。该研究可以解决商业应用、资源整合、好友推荐等方面的相关问题。现有的算法如通过文本挖掘、单纯的用户属性无法取得良好的效果。提出CLA(Combined Link and Attribute)算法实现用户身份匹配。通过好友亲密度获得候选用户,结合基于网络结构的链接信息和用户属性信息进行用户匹配度计算。其中,链接信息相似度利用朋友匹配度计算得到。将该算法应用于多种社交网络,实验结果表明,该算法效果优越于传统的算法效果。
基金supported by the open fund project ‘Research of Information Service of Marine Sensor Web’ (Grant No.2011002)the project ‘Research on Channel-Characteristics-Oriented Data Transmission Algorithm in USNs’ of NSF of China (Grant No.61202403)the projects ‘Research of Making Regulation of Testing Technology of Device Interface’ and ‘Development and Application of Real-Time and Long-Term Observation Network Under Nearshore and Adjacent Marine Areas’ of Public science and Technology Research Funds Projects of Ocean(Grant No.201305033-6,No.201105030)
文摘A great deal of ocean sensor observation data exists, for a wide range of marine disciplines, derived from in situ and remote observing platforms, in real-time, near-real-time and delayed mode. Ocean monitoring is routinely completed using sensors and instruments. Standardization is the key requirement for exchanging information about ocean sensors and sensor data and for comparing and combining information from different sensor networks. One or more sensors are often physically integrated into a single ocean ‘instrument' device, which often brings in many challenges related to diverse sensor data formats, parameters units, different spatiotemporal resolution, application domains, data quality and sensors protocols. To face these challenges requires the standardization efforts aiming at facilitating the so-called Sensor Web, which making it easy to provide public access to sensor data and metadata information. In this paper, a Marine Sensor Web, based on SOA and EDA and integrating the MBARI's PUCK protocol, IEEE 1451 and OGC SWE 2.0, is illustrated with a five-layer architecture. The Web Service layer and Event Process layer are illustrated in detail with an actual example. The demo study has demonstrated that a standard-based system can be built to access sensors and marine instruments distributed globally using common Web browsers for monitoring the environment and oceanic conditions besides marine sensor data on the Web, this framework of Marine Sensor Web can also play an important role in many other domains' information integration.
基金supported in part by National Natural Science Foundation of China under grant No. 61170258 and 61379127National Ocean Public Benefit Research Foundation under grant No. 201305033-6 and 2011 05034-10+1 种基金Marine Renewable Energy Special Foundation under grant No. GHME2012ZC02Science and Technology Development Plan of Qingdao City under Grant No. 12-1-3-81-jh
文摘Ocean information management is of great importance as it has been employed in many areas of ocean science and technology. However, the developments of Ocean Information Systems(OISs) often suffer from low efficiency because of repetitive work and continuous modifications caused by dynamic requirements. In this paper, the basic requirements of OISs are analyzed first, and then a novel platform DPOI is proposed to improve development efficiency and enhance software quality of OISs by providing off-the-shelf resources. In the platform, the OIS is decomposed hierarchically into a set of modules, which can be reused in different system developments. These modules include the acquisition middleware and data loader that collect data from instruments and files respectively, the database that stores data consistently, the components that support fast application generation, the web services that make the data from distributed sources syntactical by use of predefined schemas and the configuration toolkit that enables software customization. With the assistance of the development platform, the software development needs no programming and the development procedure is thus accelerated greatly. We have applied the development platform in practical developments and evaluated its efficiency in several development practices and different development approaches. The results show that DPOI significantly improves development efficiency and software quality.