期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Positional Information is a Strong Supervision for Volumetric Medical Image Segmentation
1
作者 ZHAO Yinjie hou runping +5 位作者 ZENG Wanqin QIN Yulei SHEN Tianle XU Zhiyong FU Xiaolong SHEN Hongbin 《Journal of Shanghai Jiaotong university(Science)》 2025年第1期121-129,共9页
Medical image segmentation is a crucial preliminary step for a number of downstream diagnosis tasks.As deep convolutional neural networks successfully promote the development of computer vision,it is possible to make ... Medical image segmentation is a crucial preliminary step for a number of downstream diagnosis tasks.As deep convolutional neural networks successfully promote the development of computer vision,it is possible to make medical image segmentation a semi-automatic procedure by applying deep convolutional neural networks to finding the contours of regions of interest that are then revised by radiologists.However,supervised learning necessitates large annotated data,which are difficult to acquire especially for medical images.Self-supervised learning is able to take advantage of unlabeled data and provide good initialization to be finetuned for downstream tasks with limited annotations.Considering that most self-supervised learning especially contrastive learning methods are tailored to natural image classification and entail expensive GPU resources,we propose a novel and simple pretext-based self-supervised learning method that exploits the value of positional information in volumetric medical images.Specifically,we regard spatial coordinates as pseudo labels and pretrain the model by predicting positions of randomly sampled 2D slices in volumetric medical images.Experiments on four semantic segmentation datasets demonstrate the superiority of our method over other self-supervised learning methods in both semi-supervised learning and transfer learning settings.Codes are available at https://github.com/alienzyj/PPos. 展开更多
关键词 self-supervised learning medical image analysis semantic segmentation
原文传递
基于胸部CT预测早期非小细胞肺癌淋巴道或血道转移风险的研究进展 被引量:12
2
作者 傅圆圆 侯润萍 傅小龙 《中国癌症杂志》 CAS CSCD 北大核心 2022年第4期343-350,共8页
非小细胞肺癌(non-small cell lung cancer,NSCLC)占肺癌的80%~85%,是严重危害人类健康的恶性肿瘤之一。早期NSCLC治疗以手术切除或立体定向放疗等为主,确诊时是否存在淋巴道转移将会影响到局部治疗方法选择,局部治疗完成后是否还存在... 非小细胞肺癌(non-small cell lung cancer,NSCLC)占肺癌的80%~85%,是严重危害人类健康的恶性肿瘤之一。早期NSCLC治疗以手术切除或立体定向放疗等为主,确诊时是否存在淋巴道转移将会影响到局部治疗方法选择,局部治疗完成后是否还存在淋巴道和血道转移风险将成为辅助治疗精准决策的依据。如何预测NSCLC的淋巴道或血道转移风险,仍是一个难题。随着肿瘤发生、发展的演进及治疗的可塑性,肿瘤在时间、空间上生物学特性的异质性严重影响临床诊断、治疗及预后预测的精准性。正是受限于肿瘤的异质性,目前作为金标准的侵入性活检难以反映肿瘤生物学特性的全貌。基于医学图像的肿瘤生物学特性识别方法经历了从人工肉眼定性分析到手动提取影像学特征利用高级统计方法建模,再到影像组学和深度学习模型的发展,使精准高效的医学影像学分析成为可能。本文基于胸部CT影像,从影像组学和深度学习角度综述了影响早期NSCLC治疗决策的重要影响因素,聚焦于淋巴道和血道转移风险预测的研究进展。 展开更多
关键词 非小细胞肺癌 影像组学 深度学习 淋巴道转移 血道转移
暂未订购
上一页 1 下一页 到第
使用帮助 返回顶部