期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Determination of Intraseasonal Variation of Precipitation Microphysics in the Southern Indian Ocean from Joss–Waldvogel Disdrometer Observation during the CINDY Field Campaign 被引量:1
1
作者 MARZUKI Hiroyuki HASHIGUCHI +2 位作者 Mutya VONNISA harmadi Masaki KATSUMATA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第11期1415-1427,共13页
To date, the intraseasonal variation of raindrop size distribution(DSD) in response to the Madden–Julian Oscillation(MJO) has been examined only over the Indonesian Maritime Continent, particularly in Sumatra. This p... To date, the intraseasonal variation of raindrop size distribution(DSD) in response to the Madden–Julian Oscillation(MJO) has been examined only over the Indonesian Maritime Continent, particularly in Sumatra. This paper presents the intraseasonal variation of DSD over the Indian Ocean during the Cooperative Indian Ocean experiment on Intraseasonal Variability in the Year 2011(CINDY 2011) field campaign. The DSDs determined using a Joss–Waldvogel disdrometer,which was installed on the roof of the anti-rolling system of the R/V Mirai during stationary observation(25 September to 30 November 2011) at(8°S, 80.5°E), were analyzed. The vertical structure of precipitation was revealed by Tropical Rainfall Measuring Mission Precipitation Radar(version 7) data. While the general features of vertical structures of precipitation observed during the CINDY and Sumatra observation are similar, the intraseasonal variation of the DSD in response to the MJO at each location is slightly different. The DSDs during the active phase of the MJO are slightly broader than those during the inactive phase, which is indicated by a larger mass-weighted mean diameter value. Furthermore, the radar reflectivity during the active MJO phase is greater than that during the inactive phase at the same rainfall rate. The microphysical processes that generate large-sized drops over the ocean appear to be more dominant during the active MJO phase, in contrast to the observations made on land(Sumatra). This finding is consistent with the characteristics of radar reflectivity below the freezing level, storm height, bright band height, cloud effective radius, and aerosol optical depth. 展开更多
关键词 DSD(raindrop size distribution) MJO(Madden–Julian Oscillation) Indian Ocean CINDY
在线阅读 下载PDF
Diurnal Variation in the Vertical Profile of the Raindrop Size Distribution for Stratiform Rain as Inferred from Micro Rain Radar Observations in Sumatra 被引量:1
2
作者 Ravidho RAMADHAN MARZUKI +3 位作者 Mutya VONNISA harmadi Hiroyuki HASHIGUCHI Toyoshi SHIMOMAI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第8期832-846,共15页
The diurnal variation in the vertical structure of the raindrop size distribution(RSD)associated with stratiform rain at Kototabang,West Sumatra(0.20°S,100.32°E),was investigated using micro rain radar(MRR)o... The diurnal variation in the vertical structure of the raindrop size distribution(RSD)associated with stratiform rain at Kototabang,West Sumatra(0.20°S,100.32°E),was investigated using micro rain radar(MRR)observations from January 2012 to August 2016.Along with the MRR data,the RSD from an optical disdrometer and vertical profile of precipitation from the Tropical Rainfall Measuring Mission were used to establish the microphysical characteristics of diurnal rainfall.Rainfall during 0000–0600 LST and 1800–2400 LST had a lower concentration of small drops and a higher concentration of large drops when compared to rainfall during the daytime(0600–1800 LST).The RSD stratified on the basis of rain rate(R)showed a lower total concentration of drops and higher mass-weighted mean diameter in 0000–0600 LST and1800–2400 LST than in the daytime.During the daytime,the RSD is likely governed by a riming process that can be seen from a weak bright band(BB).On the other hand,during 0000–0600 LST and 1800–2400 LST,the BB was stronger and the rainfall was associated with a higher concentration of midsize and large drops,which could be attributed to more active aggregation right above the melting layer with minimal breakup.Diurnal variation in the vertical profile of RSD led to a different radar reflectivity(Z)–R relationship in the rain column,in which Z during the periods 0000–0600 LST and1800–2400 LST was larger than at the other times,for the same R. 展开更多
关键词 diurnal variation raindrop size distribution micro rain radar stratiform rain Kototabang
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部