We report the results of the experiment on synthesizing ^(287,288)Mc isotopes (Z=115) using the fusionevaporation reaction ^(243)Am(^(48)Ca,4n,3n)^(287,288)Mc at the Spectrometer for Heavy Atoms and Nuclear Structure-...We report the results of the experiment on synthesizing ^(287,288)Mc isotopes (Z=115) using the fusionevaporation reaction ^(243)Am(^(48)Ca,4n,3n)^(287,288)Mc at the Spectrometer for Heavy Atoms and Nuclear Structure-2(SHANS2),a gas-filled recoil separator located at the China Accelerator Facility for Superheavy Elements(CAFE2).In total,20 decay chains are attributed to ^(288)Mc and 1 decay chain is assigned to ^(287)Mc.The measured oa-decay properties of ^(287,288)Mc as well as its descendants are consistent with the known data.No additional decay chains originating from the 2n or 5n reaction channels were detected.The excitation function of the ^(243)Am(^(48)Ca,3n)^(288)Mc reaction was measured at the cross-section level of picobarn,which indicates the promising capability for the study of heavy and superheavy nuclei at the facility.展开更多
The cosmic-ray(CR)electrons and positrons in space are of considerable significance for studying the origin and propagation of CRs.The satellite-borne detector Dark Matter Particle Explorer(DAMPE)has been used to meas...The cosmic-ray(CR)electrons and positrons in space are of considerable significance for studying the origin and propagation of CRs.The satellite-borne detector Dark Matter Particle Explorer(DAMPE)has been used to measure the separate electron and positron spectra,as well as the positron fraction.In this study,the Earth's magnetic field is used to distinguish CR electrons and positrons,as the DAMPE detector does not carry an onboard magnet.The energy for the measurements ranges from 10 to 20 GeV,which is currently limited at high energy by the zenith-pointing orientation of DAMPE.The results are consistent with previous measurements based on the magnetic spectrometer by AMS-02 and PAMELA,whereas the results of Fermi-LAT appear to be systematically shifted to larger values.展开更多
基金supported in part by the National Key R&D Program of China (Contract Nos.2023YFA1606500,2024YFE0109800,and 2024YFE0110400)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB34010000)+5 种基金the Gansu Key Project of Science and Technology (Grant No.23ZDGA014)the Guangdong Major Project of Basic and Applied Basic Research (Grant No.2021B0301030006)the National Natural Science Foundation of China (Grant Nos.12105328,W2412040,12475126,12422507,12035011,12375118,12435008,and W2412043)the Chinese Academy of Sciences Project for Young Scientists in Basic Research(Grant No.YSBR-002)the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant Nos.2020409 and 2023439)the Russian Science Foundation (Grant No.25-42-00003)。
文摘We report the results of the experiment on synthesizing ^(287,288)Mc isotopes (Z=115) using the fusionevaporation reaction ^(243)Am(^(48)Ca,4n,3n)^(287,288)Mc at the Spectrometer for Heavy Atoms and Nuclear Structure-2(SHANS2),a gas-filled recoil separator located at the China Accelerator Facility for Superheavy Elements(CAFE2).In total,20 decay chains are attributed to ^(288)Mc and 1 decay chain is assigned to ^(287)Mc.The measured oa-decay properties of ^(287,288)Mc as well as its descendants are consistent with the known data.No additional decay chains originating from the 2n or 5n reaction channels were detected.The excitation function of the ^(243)Am(^(48)Ca,3n)^(288)Mc reaction was measured at the cross-section level of picobarn,which indicates the promising capability for the study of heavy and superheavy nuclei at the facility.
基金supported by the National Key Research and Development Program of China(No.2022YFF0503303)the National Natural Science Foundation of China(Nos.12220101003,12275266,12003076,12022503,12103094 and U2031149)+8 种基金Outstanding Youth Science Foundation of NSFC(No.12022503)the Project for Young Scientists in Basic Research of the Chinese Academy of Sciences(No.YSBR-061)the Strategic Priority Program on Space Science of Chinese Academy of Sciences(No.E02212A02S)the Youth Innovation Promotion Association of CAS(No.2021450)the Young Elite Scientists Sponsorship Program by CAST(No.YESS20220197)the New Cornerstone Science Foundation through the XPLORER PRIZEthe Program for Innovative Talents and Entrepreneur in Jiangsu.In Europesupported by the Swiss National Science Foundation(SNSF),Switzerland,the National Institute for Nuclear Physics(INFN),Italythe European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation programme(No.851103).
文摘The cosmic-ray(CR)electrons and positrons in space are of considerable significance for studying the origin and propagation of CRs.The satellite-borne detector Dark Matter Particle Explorer(DAMPE)has been used to measure the separate electron and positron spectra,as well as the positron fraction.In this study,the Earth's magnetic field is used to distinguish CR electrons and positrons,as the DAMPE detector does not carry an onboard magnet.The energy for the measurements ranges from 10 to 20 GeV,which is currently limited at high energy by the zenith-pointing orientation of DAMPE.The results are consistent with previous measurements based on the magnetic spectrometer by AMS-02 and PAMELA,whereas the results of Fermi-LAT appear to be systematically shifted to larger values.