The development of chemical technologies,which involves a multistage process covering laboratory research,scale‐up to industrial deployment,and necessitates interdisciplinary collaboration,is often accompanied by sub...The development of chemical technologies,which involves a multistage process covering laboratory research,scale‐up to industrial deployment,and necessitates interdisciplinary collaboration,is often accompanied by substantial time and economic costs.To address these challenges,in this work,we report ChemELLM,a domain‐specific large language model(LLM)with 70 billion parameters for chemical engineering.ChemELLM demonstrates state‐of‐the‐art performance across critical tasks ranging from foundational understanding to professional problem‐solving.It outperforms mainstream LLMs(e.g.,O1‐Preview,GPT‐4o,and DeepSeek‐R1)on ChemEBench,the first multidimensional benchmark for chemical engineering,which encompasses 15 dimensions across 101 distinct essential tasks.To support robust model development,we curated ChemEData,a purpose‐built dataset containing 19 billion tokens for pre‐training and 1 billion tokens for fine‐tuning.This work establishes a new paradigm for artificial intelligence‐driven innovation,bridging the gap between laboratory‐scale innovation and industrial‐scale implementation,thus accelerating technological advancement in chemical engineering.ChemELLM is publicly available at https://chemindustry.iflytek.com/chat.展开更多
Power to hydrogen(P2H)provides a promising solution to the geographic mismatch between sources of renewable energy and the market,due to its technological maturity,flexibility,and the availability of technical and eco...Power to hydrogen(P2H)provides a promising solution to the geographic mismatch between sources of renewable energy and the market,due to its technological maturity,flexibility,and the availability of technical and economic data from a range of active demonstration projects.In this review,we aim to provide an overview of the status of P2H,analyze its technical barriers and solutions,and propose potential opportunities for future research and industrial demonstrations.We specifically focus on the transport of hydrogen via natural gas pipeline networks and end-user purification.Strong evidence shows that an addition of about 10%hydrogen into natural gas pipelines has negligible effects on the pipelines and utilization appliances,and may therefore extend the asset value of the pipelines after natural gas is depleted.To obtain pure hydrogen from hydrogen-enriched natural gas(HENG)mixtures,end-user separation is inevitable,and can be achieved through membranes,adsorption,and other promising separation technologies.However,novel materials with high selectivity and capacity will be the key to the development of industrial processes,and an integrated membrane-adsorption process may be considered in order to produce high-purity hydrogen from HENG.It is also worth investigating the feasibility of electrochemical separation(hydrogen pumping)at a large scale and its energy analysis.Cryogenics may only be feasible when liquefied natural gas(LNG)is one of the major products.A range of other technological and operational barriers and opportunities,such as water availability,byproduct(oxygen)utilization,and environmental impacts,are also discussed.This review will advance readers’understanding of P2H and foster the development of the hydrogen economy.展开更多
The emission of large amounts of carbon dioxide is of major concern with regard to increasing the risk of climate change. Carbon capture, utilisation and storage (CCUS) has been proposed as an important pathway for sl...The emission of large amounts of carbon dioxide is of major concern with regard to increasing the risk of climate change. Carbon capture, utilisation and storage (CCUS) has been proposed as an important pathway for slowing the rate of these emissions. Solvent absorption of CO_2 using amino acid solvents has drawn much attention over the last few years due to advantages including their ionic nature, low evaporation rate, low toxicity, high absorption rate and high biodegradation potential, compared to traditional amine solvents. In this review, recent progress on the absorption kinetics of amino acids is summarised, and the engineering potential of using amino acids as carbon capture solvents is discussed. The reaction orders between amino acids and carbon dioxide are typ- ically between 1 and 2. Glycine exhibits a reaction order of 1, whilst, by comparison, lysine, proline and sarcosine have the largest reaction constants with carbon dioxide which is much larger than that of the benchmark solvent monoethanolamine (MEA). Ionic strength, p H and cations such as sodium and potassium have been shown to be important factors influencing the reactivity of amino acids. Corrosivity and reactivity with impurities such as SOx and NOxare not considered to be significant problems for amino acids solvents. The precipitation of CO_2 loaded amino acid salts is thought to be a good pathway for increasing CO_2loading capacity and cutting desorption energy costs if well-controlled. It is recommended that more detailed research on amino acid degradation and overall process energy costs is conducted. Overall, amino acid solvents are recognised as promising potential solvents for car- bon dioxide capture.展开更多
An optimized detection model based on weighted entropy for multiple input multiple output (MIMO) radar in multipath environment is presented. After defining the multipath distance difference (MDD), the multipath recei...An optimized detection model based on weighted entropy for multiple input multiple output (MIMO) radar in multipath environment is presented. After defining the multipath distance difference (MDD), the multipath received signal model with four paths is built systematically. Both the variance and correlation coefficient of multipath scattering coefficient with MDD are analyzed, which indicates that the multipath variable can decrease the detection performance by reducing the echo power. By making use of the likelihood ratio test (LRT), a new method based on weighted entropy is introduced to use the positive multipath echo power and suppress the negative echo power, which results in better performance. Simulation results show that, compared with non-multipath environment or other recently developed methods, the proposed method can achieve detection performance improvement with the increase of sensors.展开更多
The process models for an equilibrium CO_2 absorber and a rate based CO_2 absorber using potassium carbonate(K2 CO3) solvents were developed in Aspen Custom Modeller(ACM) to remove CO_2 from a flue gas. The process mo...The process models for an equilibrium CO_2 absorber and a rate based CO_2 absorber using potassium carbonate(K2 CO3) solvents were developed in Aspen Custom Modeller(ACM) to remove CO_2 from a flue gas. The process model utilised the Electrolyte Non-Random Two Liquid(ENRTL) thermodynamic model and various packing correlations. The results from the ACM equilibrium model shows good agreement with an inbuilt Aspen Plus?model when using the same input conditions. By further introducing a Murphree efficiency which is related to mass transfer and packing hydraulics, the equilibrium model can validate the experimental results from a pilot plant within a deviation of 10%. A more rigorous rate based model included mass and energy flux across the interface and the enhancement effect resulting from chemical reactions. The rate based model was validated using experimental data from pilot plants and was shown to predict the results to within 10%. A parametric sensitivity analysis showed that inlet flue gas flowrate and K2 CO3 concentration in the lean solvent has significant impact on CO_2 recovery. Although both models can provide reasonable predictions based on pilot plant results, the rate based model is more advanced as it can explain mass and heat transfer, transport phenomena and chemical reactions occurring inside the absorber without introducing an empirical Murphree efficiency.展开更多
In this advanced exploration, we focus on multiple parameters estimation in bistatic Multiple-Input Multiple-Output(MIMO) radar systems, a crucial technique for target localization and imaging. Our research innovative...In this advanced exploration, we focus on multiple parameters estimation in bistatic Multiple-Input Multiple-Output(MIMO) radar systems, a crucial technique for target localization and imaging. Our research innovatively addresses the joint estimation of the Direction of Departure(DOD), Direction of Arrival(DOA), and Doppler frequency for incoherent targets. We propose a novel approach that significantly reduces computational complexity by utilizing the TemporalSpatial Nested Sampling Model(TSNSM). Our methodology begins with a multi-linear mapping mechanism to efficiently eliminate unnecessary virtual Degrees of Freedom(DOFs) and reorganize the remaining ones. We then employ the Toeplitz matrix triple iteration reconstruction method, surpassing the traditional Temporal-Spatial Smoothing Window(TSSW) approach, to mitigate the single snapshot effect and reduce computational demands. We further refine the highdimensional ESPRIT algorithm for joint estimation of DOD, DOA, and Doppler frequency, eliminating the need for additional parameter pairing. Moreover, we meticulously derive the Cramér-Rao Bound(CRB) for the TSNSM. This signal model allows for a second expansion of DOFs in time and space domains, achieving high precision in target angle and Doppler frequency estimation with low computational complexity. Our adaptable algorithm is validated through simulations and is suitable for sparse array MIMO radars with various structures, ensuring higher precision in parameter estimation with less complexity burden.展开更多
Objective: To test the expression of HER4 in non-small cell lung cancer (NSCLC) and elucidate the relationship between its over-expression and the clinical pathology of NSCLC. Methods: 70 cases of paraffin-embedded ti...Objective: To test the expression of HER4 in non-small cell lung cancer (NSCLC) and elucidate the relationship between its over-expression and the clinical pathology of NSCLC. Methods: 70 cases of paraffin-embedded tissues from informative NSCLC were tested for the expression of HER4 by means of immunohistochemical assay. Results: HER4 were overexpressed in NSCLC in 91.4%. The overexpression of HER4 correlated only with the lymph node metastasis, TNM staging and survival after operation. Conclusion: ErbB4 is one of the genes to regulate the growth of NSCLC in advanced stages and artificial interference of the overexpression of HER4 in NSCLC might be a good way for the treatment of NSCLC in advanced stages.展开更多
Reverse water-gas shift reaction represents a strategic pathway for CO_(2) utilization.Despite its potential,reverse water-gas shift reaction via conventional thermal-catalysis faces several challenges,including low e...Reverse water-gas shift reaction represents a strategic pathway for CO_(2) utilization.Despite its potential,reverse water-gas shift reaction via conventional thermal-catalysis faces several challenges,including low equilibrium conversion rates due to thermodynamic constraints,high energy consumption,and insufficient product selectivity.Here,this study demonstrates an evident synergetic effect between plasma and Ag/ZnO,on enhancing reverse water-gas shift reaction.The plasma catalytic system achieved significantly improved performance with a remarkable CO_(2) conversion rate of 76.5%,a high CO selectivity of 96.8% and a CO yield of 74.1%,along with an energy efficiency as high as 0.19 mmol·kJ^(-1),surpassing the plasma alone system and ZnO catalytic systems.Results from X-ray photoelectron spectroscopy and Auger electron spectroscopy confirm the presence of electronic metal-support interactions between Ag and ZnO,which facilitates the formation of electron-deficient Ag sites and partially reduced ZnOx species.These reactive sites,along with oxygen vacancies created during reduction treatment,enhance the adsorption and activation of H_(2) and CO_(2),offering a dominant plasma-assisted surface reaction pathway for the improved reverse water-gas shift reaction.These findings underscore the crucial role of electronic metal-support interactions in manipulating surface environments to facilitate efficient plasma-assisted catalytic reactions,with significant implications for the rational design of catalysts capable of converting CO_(2) efficiently under mild conditions.展开更多
Metal ions including Fe^(3+),Ca^(2+),Mg^(2+),Ni^(2+),Co^(2+) and Cu^(2+) are commonly found in the leaching solution of laterite-nickel ores,and the pre-removal of Fe^(3+) is extremely important for the recovery of ni...Metal ions including Fe^(3+),Ca^(2+),Mg^(2+),Ni^(2+),Co^(2+) and Cu^(2+) are commonly found in the leaching solution of laterite-nickel ores,and the pre-removal of Fe^(3+) is extremely important for the recovery of nickel and cobalt.Di(2-ethylhexyl)phosphate acid(D2EHPA)showed high extraction rate and selectivity of Fe^(3+) over other metal ions.The acidity of the aqueous solution is crucial to the extraction of Fe^(3+),and the stoichiometry ratio between Fe^(3+) and the extractant is 0.86:1.54.The enthalpy for the extraction of Fe^(3+) using D2EHPA was 19.50 kJ/mol.The extraction of Fe^(3+)was ≥99% under the optimized conditions after a three-stage solvent extraction process.The iron stripping effects of different reagents showed an order of H_(2)C_(2)O_(4)>NH_(4)HCO_(3)>HCl>NaCl>NaHCO_(3)>Na_(2)SO_(3).The stripping of Fe was ≥99% under the optimized conditions using H_(2)C_(2)O_(4) as a stripping reagent.展开更多
The global energy market is in a transition towards low carbon fuel systems to ensure the sustainable development of our society and economy.This can be achieved by converting the surplus renewable energy into hydroge...The global energy market is in a transition towards low carbon fuel systems to ensure the sustainable development of our society and economy.This can be achieved by converting the surplus renewable energy into hydrogen gas.The injection of hydrogen(£10%v/v)in the existing natural gas pipelines is demonstrated to have negligible effects on the pipelines and is a promising solution for hydrogen transportation and storage if the enduser purification technologies for hydrogen recovery from hydrogen enriched natural gas(HENG)are in place.In this review,promising membrane technologies for hydrogen separation is revisited and presented.Dense metallic membranes are highlighted with the ability of producing 99.9999999%(v/v)purity hydrogen product.However,high operating temperature(≥300℃)incurs high energy penalty,thus,limits its application to hydrogen purification in the power to hydrogen roadmap.Polymeric membranes are a promising candidate for hydrogen separation with its commercial readiness.However,further investigation in the enhancement of H2/CH4 selectivity is crucial to improve the separation performance.The potential impacts of impurities in HENG on membrane performance are also discussed.The research and development outlook are presented,highlighting the essence of upscaling the membrane separation processes and the integration of membrane technology with pressure swing adsorption technology.展开更多
Focused beam reflectance measurement(FBRM)and 13C nuclear magnetic resonance(13C NMR)analysis were used to study the precipitation process of CO2-loaded potassium glycinate(KGLY)solutions at different CO2 loadings,dur...Focused beam reflectance measurement(FBRM)and 13C nuclear magnetic resonance(13C NMR)analysis were used to study the precipitation process of CO2-loaded potassium glycinate(KGLY)solutions at different CO2 loadings,during the addition of ethanol as an antisolvent at a rate of 10 mL·min−1.The volume ratio of ethanol added to the KGLY solution(3.0 mol·L−1,340 mL)ranged from 0 to 3.0.Three solid-liquid-liquid phases were formed during the precipitation process.The FBRM results showed that the number of particles formed increased with CO2 loading and ethanol addition for CO2-unsaturated KGLY solutions,whilst for CO2-saturated KGLY solution it first increased then decreased to a stable value with ethanol addition.13C NMR spectroscopic analysis showed that the crystals precipitated from the CO2-unsaturated KGLY solutions consisted of glycine only,and the quantity crystallised increased with CO2 loading and ethanol addition.However,a complex mixture containing glycine,carbamate and potassium bicarbonate was precipitated from CO2-saturated KGLY solution with the maximum precipitation percentages of 94.3%,31.4%and 89.6%,respectively,at the ethanol volume fractions of 1.6,2.5 and 2.3.展开更多
The rare microbial biosphere provides broad ecological services and resilience to various ecosystems.Nevertheless,the biogeographical patterns and assembly processes of rare bacterioplankton communities in large river...The rare microbial biosphere provides broad ecological services and resilience to various ecosystems.Nevertheless,the biogeographical patterns and assembly processes of rare bacterioplankton communities in large rivers remain uncertain.In this study,we investigated the biogeography and community assembly processes of abundant and rare bacterioplankton taxa in the Yangtze River(China)covering a distance of 4300 km.The results revealed similar spatiotemporal patterns of abundant taxa(AT)and rare taxa(RT)at both taxonomic and phylogenetic levels,and analysis of similarities revealed that RT was significantly influenced by season and landform than AT.Furthermore,RT correlated with more environmental factors than AT,whereas environmental and spatial factors explained a lower proportion of community shifts in RT than in AT.The steeper distance–decay slopes in AT indicated higher spatial turnover rates of abundant subcommunities than rare subcommunities.The null model revealed that both AT and RT were mainly governed by stochastic processes.However,dispersal limitation primarily governed the AT,whereas the undominated process accounted for a higher fraction of stochastic processes in RT.River flow and suspended solids mediated the balance between the stochastic and deterministic processes in RT.The spatiotemporal dynamics and assembly processes of total taxa were more similar as AT than RT.This study provides new insights into both significant spatiotemporal dynamics and inconsistent assembly processes of AT and RT in large rivers.展开更多
Collaborations between China and Australia has always been crossed at almost all fields covering mathematics and physics,computer sciences and IT,chemistry,chemical engineering and materials,economics,business and man...Collaborations between China and Australia has always been crossed at almost all fields covering mathematics and physics,computer sciences and IT,chemistry,chemical engineering and materials,economics,business and management,mechanical,electrical and electronic engineering,social sciences and humanities,biomedical and health sciences,civil,environmental and agricultural engineering,etc.展开更多
文摘The development of chemical technologies,which involves a multistage process covering laboratory research,scale‐up to industrial deployment,and necessitates interdisciplinary collaboration,is often accompanied by substantial time and economic costs.To address these challenges,in this work,we report ChemELLM,a domain‐specific large language model(LLM)with 70 billion parameters for chemical engineering.ChemELLM demonstrates state‐of‐the‐art performance across critical tasks ranging from foundational understanding to professional problem‐solving.It outperforms mainstream LLMs(e.g.,O1‐Preview,GPT‐4o,and DeepSeek‐R1)on ChemEBench,the first multidimensional benchmark for chemical engineering,which encompasses 15 dimensions across 101 distinct essential tasks.To support robust model development,we curated ChemEData,a purpose‐built dataset containing 19 billion tokens for pre‐training and 1 billion tokens for fine‐tuning.This work establishes a new paradigm for artificial intelligence‐driven innovation,bridging the gap between laboratory‐scale innovation and industrial‐scale implementation,thus accelerating technological advancement in chemical engineering.ChemELLM is publicly available at https://chemindustry.iflytek.com/chat.
基金support of Global Innovation Linkage(GIL)awarded by Department of Industry,Innovation and Science entitled“Development of Unconventional Gas Technologies for Sustainable Energy Security"(GIL54444),Early Career Researcher Grants Scheme awarded by the University of Mel-bourne entitled“Production of HighPurity Hydrogen from Mixed Pipeline Gases"(1858821),and Future Fuels Cooperative Research Centre(CRC)“Novel Separation Technology development forhy-drogen and future fuels systems"(RP3.2-08).
文摘Power to hydrogen(P2H)provides a promising solution to the geographic mismatch between sources of renewable energy and the market,due to its technological maturity,flexibility,and the availability of technical and economic data from a range of active demonstration projects.In this review,we aim to provide an overview of the status of P2H,analyze its technical barriers and solutions,and propose potential opportunities for future research and industrial demonstrations.We specifically focus on the transport of hydrogen via natural gas pipeline networks and end-user purification.Strong evidence shows that an addition of about 10%hydrogen into natural gas pipelines has negligible effects on the pipelines and utilization appliances,and may therefore extend the asset value of the pipelines after natural gas is depleted.To obtain pure hydrogen from hydrogen-enriched natural gas(HENG)mixtures,end-user separation is inevitable,and can be achieved through membranes,adsorption,and other promising separation technologies.However,novel materials with high selectivity and capacity will be the key to the development of industrial processes,and an integrated membrane-adsorption process may be considered in order to produce high-purity hydrogen from HENG.It is also worth investigating the feasibility of electrochemical separation(hydrogen pumping)at a large scale and its energy analysis.Cryogenics may only be feasible when liquefied natural gas(LNG)is one of the major products.A range of other technological and operational barriers and opportunities,such as water availability,byproduct(oxygen)utilization,and environmental impacts,are also discussed.This review will advance readers’understanding of P2H and foster the development of the hydrogen economy.
文摘The emission of large amounts of carbon dioxide is of major concern with regard to increasing the risk of climate change. Carbon capture, utilisation and storage (CCUS) has been proposed as an important pathway for slowing the rate of these emissions. Solvent absorption of CO_2 using amino acid solvents has drawn much attention over the last few years due to advantages including their ionic nature, low evaporation rate, low toxicity, high absorption rate and high biodegradation potential, compared to traditional amine solvents. In this review, recent progress on the absorption kinetics of amino acids is summarised, and the engineering potential of using amino acids as carbon capture solvents is discussed. The reaction orders between amino acids and carbon dioxide are typ- ically between 1 and 2. Glycine exhibits a reaction order of 1, whilst, by comparison, lysine, proline and sarcosine have the largest reaction constants with carbon dioxide which is much larger than that of the benchmark solvent monoethanolamine (MEA). Ionic strength, p H and cations such as sodium and potassium have been shown to be important factors influencing the reactivity of amino acids. Corrosivity and reactivity with impurities such as SOx and NOxare not considered to be significant problems for amino acids solvents. The precipitation of CO_2 loaded amino acid salts is thought to be a good pathway for increasing CO_2loading capacity and cutting desorption energy costs if well-controlled. It is recommended that more detailed research on amino acid degradation and overall process energy costs is conducted. Overall, amino acid solvents are recognised as promising potential solvents for car- bon dioxide capture.
基金supported by the Natural Science Foundation Research Project of Shaanxi Province(2016JQ6020)
文摘An optimized detection model based on weighted entropy for multiple input multiple output (MIMO) radar in multipath environment is presented. After defining the multipath distance difference (MDD), the multipath received signal model with four paths is built systematically. Both the variance and correlation coefficient of multipath scattering coefficient with MDD are analyzed, which indicates that the multipath variable can decrease the detection performance by reducing the echo power. By making use of the likelihood ratio test (LRT), a new method based on weighted entropy is introduced to use the positive multipath echo power and suppress the negative echo power, which results in better performance. Simulation results show that, compared with non-multipath environment or other recently developed methods, the proposed method can achieve detection performance improvement with the increase of sensors.
基金financial support from Peter Cook Centre for CCS Research
文摘The process models for an equilibrium CO_2 absorber and a rate based CO_2 absorber using potassium carbonate(K2 CO3) solvents were developed in Aspen Custom Modeller(ACM) to remove CO_2 from a flue gas. The process model utilised the Electrolyte Non-Random Two Liquid(ENRTL) thermodynamic model and various packing correlations. The results from the ACM equilibrium model shows good agreement with an inbuilt Aspen Plus?model when using the same input conditions. By further introducing a Murphree efficiency which is related to mass transfer and packing hydraulics, the equilibrium model can validate the experimental results from a pilot plant within a deviation of 10%. A more rigorous rate based model included mass and energy flux across the interface and the enhancement effect resulting from chemical reactions. The rate based model was validated using experimental data from pilot plants and was shown to predict the results to within 10%. A parametric sensitivity analysis showed that inlet flue gas flowrate and K2 CO3 concentration in the lean solvent has significant impact on CO_2 recovery. Although both models can provide reasonable predictions based on pilot plant results, the rate based model is more advanced as it can explain mass and heat transfer, transport phenomena and chemical reactions occurring inside the absorber without introducing an empirical Murphree efficiency.
基金supported in part by the National Natural Science Foundation of China(No.62071476)in part by China Postdoctoral Science Foundation(No.2022M723879)in part by the Science and Technology Innovation Program of Hunan Province,China(No.2021RC3080)。
文摘In this advanced exploration, we focus on multiple parameters estimation in bistatic Multiple-Input Multiple-Output(MIMO) radar systems, a crucial technique for target localization and imaging. Our research innovatively addresses the joint estimation of the Direction of Departure(DOD), Direction of Arrival(DOA), and Doppler frequency for incoherent targets. We propose a novel approach that significantly reduces computational complexity by utilizing the TemporalSpatial Nested Sampling Model(TSNSM). Our methodology begins with a multi-linear mapping mechanism to efficiently eliminate unnecessary virtual Degrees of Freedom(DOFs) and reorganize the remaining ones. We then employ the Toeplitz matrix triple iteration reconstruction method, surpassing the traditional Temporal-Spatial Smoothing Window(TSSW) approach, to mitigate the single snapshot effect and reduce computational demands. We further refine the highdimensional ESPRIT algorithm for joint estimation of DOD, DOA, and Doppler frequency, eliminating the need for additional parameter pairing. Moreover, we meticulously derive the Cramér-Rao Bound(CRB) for the TSNSM. This signal model allows for a second expansion of DOFs in time and space domains, achieving high precision in target angle and Doppler frequency estimation with low computational complexity. Our adaptable algorithm is validated through simulations and is suitable for sparse array MIMO radars with various structures, ensuring higher precision in parameter estimation with less complexity burden.
基金Supported by a grant from the Ningbo Health Bureau of Zhejiang province (No. 2002057)
文摘Objective: To test the expression of HER4 in non-small cell lung cancer (NSCLC) and elucidate the relationship between its over-expression and the clinical pathology of NSCLC. Methods: 70 cases of paraffin-embedded tissues from informative NSCLC were tested for the expression of HER4 by means of immunohistochemical assay. Results: HER4 were overexpressed in NSCLC in 91.4%. The overexpression of HER4 correlated only with the lymph node metastasis, TNM staging and survival after operation. Conclusion: ErbB4 is one of the genes to regulate the growth of NSCLC in advanced stages and artificial interference of the overexpression of HER4 in NSCLC might be a good way for the treatment of NSCLC in advanced stages.
基金the Natural Science Foundation of Jiangxi Province(Grant No.20232BAB214018)the Research Projects of Ganjiang Innovation Academy(Grant No.E355F0050)of the Chinese Academy of Sciences+1 种基金the National Natural Science Foundation of China(Grant No.W2431016)the research fund of Key Laboratory of Rare Earth,Ganjiang Innovation Academy,Chinese Academy of Sciences.
文摘Reverse water-gas shift reaction represents a strategic pathway for CO_(2) utilization.Despite its potential,reverse water-gas shift reaction via conventional thermal-catalysis faces several challenges,including low equilibrium conversion rates due to thermodynamic constraints,high energy consumption,and insufficient product selectivity.Here,this study demonstrates an evident synergetic effect between plasma and Ag/ZnO,on enhancing reverse water-gas shift reaction.The plasma catalytic system achieved significantly improved performance with a remarkable CO_(2) conversion rate of 76.5%,a high CO selectivity of 96.8% and a CO yield of 74.1%,along with an energy efficiency as high as 0.19 mmol·kJ^(-1),surpassing the plasma alone system and ZnO catalytic systems.Results from X-ray photoelectron spectroscopy and Auger electron spectroscopy confirm the presence of electronic metal-support interactions between Ag and ZnO,which facilitates the formation of electron-deficient Ag sites and partially reduced ZnOx species.These reactive sites,along with oxygen vacancies created during reduction treatment,enhance the adsorption and activation of H_(2) and CO_(2),offering a dominant plasma-assisted surface reaction pathway for the improved reverse water-gas shift reaction.These findings underscore the crucial role of electronic metal-support interactions in manipulating surface environments to facilitate efficient plasma-assisted catalytic reactions,with significant implications for the rational design of catalysts capable of converting CO_(2) efficiently under mild conditions.
基金financially supported by the National Key Research and Development Program of China(Grant No.018YFC1900502)Key Research Program of Frontier Sciences of Chinese Academy of Sciences(Grant No.QYZDJ-SSW-JSC021)+1 种基金the National Natural Science Foundation of China(Grant Nos.21606241,51804289 and 51774260)CAS Interdisciplinary Innovation Team.
文摘Metal ions including Fe^(3+),Ca^(2+),Mg^(2+),Ni^(2+),Co^(2+) and Cu^(2+) are commonly found in the leaching solution of laterite-nickel ores,and the pre-removal of Fe^(3+) is extremely important for the recovery of nickel and cobalt.Di(2-ethylhexyl)phosphate acid(D2EHPA)showed high extraction rate and selectivity of Fe^(3+) over other metal ions.The acidity of the aqueous solution is crucial to the extraction of Fe^(3+),and the stoichiometry ratio between Fe^(3+) and the extractant is 0.86:1.54.The enthalpy for the extraction of Fe^(3+) using D2EHPA was 19.50 kJ/mol.The extraction of Fe^(3+)was ≥99% under the optimized conditions after a three-stage solvent extraction process.The iron stripping effects of different reagents showed an order of H_(2)C_(2)O_(4)>NH_(4)HCO_(3)>HCl>NaCl>NaHCO_(3)>Na_(2)SO_(3).The stripping of Fe was ≥99% under the optimized conditions using H_(2)C_(2)O_(4) as a stripping reagent.
基金the support of Early Career Researcher Grants Scheme awarded by the University of Melbourne entitled‘Production of High Purity Hydrogen from Mixed Pipeline Gases’Future Fuel Cooperative Research Centre(CRC)‘Novel Separation Technology development for hydrogen and future fuels systems’.
文摘The global energy market is in a transition towards low carbon fuel systems to ensure the sustainable development of our society and economy.This can be achieved by converting the surplus renewable energy into hydrogen gas.The injection of hydrogen(£10%v/v)in the existing natural gas pipelines is demonstrated to have negligible effects on the pipelines and is a promising solution for hydrogen transportation and storage if the enduser purification technologies for hydrogen recovery from hydrogen enriched natural gas(HENG)are in place.In this review,promising membrane technologies for hydrogen separation is revisited and presented.Dense metallic membranes are highlighted with the ability of producing 99.9999999%(v/v)purity hydrogen product.However,high operating temperature(≥300℃)incurs high energy penalty,thus,limits its application to hydrogen purification in the power to hydrogen roadmap.Polymeric membranes are a promising candidate for hydrogen separation with its commercial readiness.However,further investigation in the enhancement of H2/CH4 selectivity is crucial to improve the separation performance.The potential impacts of impurities in HENG on membrane performance are also discussed.The research and development outlook are presented,highlighting the essence of upscaling the membrane separation processes and the integration of membrane technology with pressure swing adsorption technology.
基金The authors acknowledge the infrastructure support from the Particulate Fluids Processing Centre(PFPC),the Peter Cook Centre(FCC)for Carbon Capture and Storage(CCS).
文摘Focused beam reflectance measurement(FBRM)and 13C nuclear magnetic resonance(13C NMR)analysis were used to study the precipitation process of CO2-loaded potassium glycinate(KGLY)solutions at different CO2 loadings,during the addition of ethanol as an antisolvent at a rate of 10 mL·min−1.The volume ratio of ethanol added to the KGLY solution(3.0 mol·L−1,340 mL)ranged from 0 to 3.0.Three solid-liquid-liquid phases were formed during the precipitation process.The FBRM results showed that the number of particles formed increased with CO2 loading and ethanol addition for CO2-unsaturated KGLY solutions,whilst for CO2-saturated KGLY solution it first increased then decreased to a stable value with ethanol addition.13C NMR spectroscopic analysis showed that the crystals precipitated from the CO2-unsaturated KGLY solutions consisted of glycine only,and the quantity crystallised increased with CO2 loading and ethanol addition.However,a complex mixture containing glycine,carbamate and potassium bicarbonate was precipitated from CO2-saturated KGLY solution with the maximum precipitation percentages of 94.3%,31.4%and 89.6%,respectively,at the ethanol volume fractions of 1.6,2.5 and 2.3.
基金supported by National Natural Science Foundation of China(Grant No.41907203)China Postdoctoral Science Foundation(202IT 140010).
文摘The rare microbial biosphere provides broad ecological services and resilience to various ecosystems.Nevertheless,the biogeographical patterns and assembly processes of rare bacterioplankton communities in large rivers remain uncertain.In this study,we investigated the biogeography and community assembly processes of abundant and rare bacterioplankton taxa in the Yangtze River(China)covering a distance of 4300 km.The results revealed similar spatiotemporal patterns of abundant taxa(AT)and rare taxa(RT)at both taxonomic and phylogenetic levels,and analysis of similarities revealed that RT was significantly influenced by season and landform than AT.Furthermore,RT correlated with more environmental factors than AT,whereas environmental and spatial factors explained a lower proportion of community shifts in RT than in AT.The steeper distance–decay slopes in AT indicated higher spatial turnover rates of abundant subcommunities than rare subcommunities.The null model revealed that both AT and RT were mainly governed by stochastic processes.However,dispersal limitation primarily governed the AT,whereas the undominated process accounted for a higher fraction of stochastic processes in RT.River flow and suspended solids mediated the balance between the stochastic and deterministic processes in RT.The spatiotemporal dynamics and assembly processes of total taxa were more similar as AT than RT.This study provides new insights into both significant spatiotemporal dynamics and inconsistent assembly processes of AT and RT in large rivers.
文摘Collaborations between China and Australia has always been crossed at almost all fields covering mathematics and physics,computer sciences and IT,chemistry,chemical engineering and materials,economics,business and management,mechanical,electrical and electronic engineering,social sciences and humanities,biomedical and health sciences,civil,environmental and agricultural engineering,etc.