The placement optimization of piezoelectric actuators and active vibration control of a membrane structure are studied in this paper. The classical linear quadratic regulator con- trollers are designed to suppress the...The placement optimization of piezoelectric actuators and active vibration control of a membrane structure are studied in this paper. The classical linear quadratic regulator con- trollers are designed to suppress the unwanted vibration. Simulation results indicate that the optimal locations of piezoelectric actuators are affected deeply by the additional mass and stiff- ness of actuators, the computational efficiency of particle swarm optimizer is higher than that of genetic algorithm for this particular problem, and the control performance of optimally placed actuators is better than that of non-optimally placed actuators.展开更多
Due to obvious advantages,such as light weight,easy folding and deployment and high accuracy of optical imaging,the membrane diffraction large space telescope has currently been one of the hot research topics.Because ...Due to obvious advantages,such as light weight,easy folding and deployment and high accuracy of optical imaging,the membrane diffraction large space telescope has currently been one of the hot research topics.Because of the influence of external disturbance and attitude adjustment,the large space telescope will occur a certain degree of vibration inevitably,affecting the imaging accuracy of the space telescope for Earth.Thus,to satisfy the requirement of imaging accuracy,it is necessary for the space telescope to adopt appropriate vibration control methods.In this paper,the active vibration control of the large space telescope is studied using cables as active actuators.Considering that cables can work under tension but not under pression and the tensile capacity is limited,the unilateral and saturated characteristics of cable actuators are taken into account during control design in this paper.Firstly,the dynamic model of the membrane diffraction space telescope is established using the finite element method(FEM).Secondly,in combination with the linear quadratic regulator(LQR)and the bang-bang regulator,a piecewise cost function is used to design the active vibration control law.Next,the controllability criterion and the genetic algorithm(GA)are adopted to determine the optimal positions of cable actuators.Finally,the validity of the proposed control method is verified by numerical simulations.Simulation results indicate that the vibration of the space telescope can be suppressed effectively using the proposed control method,and the imaging requirements of the telescope may be realized using the least cable actuators,whose minimum quantity and position distribution are determined in this paper.展开更多
The first-order approximation coupling (FOAC) model was proposed recently for dynamics and control of flexible hub-beam systems. This model may deal with system dynamics for both low and high rotation speed, while t...The first-order approximation coupling (FOAC) model was proposed recently for dynamics and control of flexible hub-beam systems. This model may deal with system dynamics for both low and high rotation speed, while the classical zeroth-order approximation coupling (ZOAC) model is only available for low rotation speed. This paper assumes the FOAC model to present experimental study of active positioning control of a flexible hub-beam system. Linearization and nonlinear control strategies are both considered. An experiment system based on a DSP TMS320F2812 board is introduced. The difference between linearization and nonlinear control strategies are studied both numerically and experimentally. Simulation and experimental results indicate that, linearized controller can make the system reach an expected position with suppressed vibration of flexible beam, but the time taken to position is longer than expected, whereas nonlinear controller works well with precise positioning, suppression of vibration and time control.展开更多
This paper studies the low-order dynamic modeling and active control of a flexible plate and provides experimental verification. First based on the input-output data of the sys- tem, the Markov parameters of the syste...This paper studies the low-order dynamic modeling and active control of a flexible plate and provides experimental verification. First based on the input-output data of the sys- tem, the Markov parameters of the system are identified using the method of observer/Kalman filter identification (OKID). Then a low-order state-space model is built using the eigensystem realization algorithm (ERA). Finally, a linear quadratic Gaussian (LQG) controller is designed based on the low-order state-space model. Experimental results have proved the effectiveness and feasibility of the research.展开更多
Variable geometry truss manipulator (VGTM) has potential to work in the future space applications, of which a dynamic model is important to dynamic analysis and control of the system. In this paper, an approach is p...Variable geometry truss manipulator (VGTM) has potential to work in the future space applications, of which a dynamic model is important to dynamic analysis and control of the system. In this paper, an approach is presented to model the dynamic equations of a VGTM by independent variables, which consists of two double-octahedral truss units and a 3-revolute-prismatic-spherical (3-RPS) parallel manipulator. In this ap- proach, the kinematic recursive relations of two adjacent bodies and geometric constrains are used to deduce the kinematic equations of the VGTM, and Jourdain's velocity varia- tion principle is adopted to establish the dynamic equations of the system. The validity of the proposed dynamic model is verified by comparison of numerical simulations with the software ADAMS. Besides, an active controller for trajectory tracking of the system is designed by the computed torque method. The effectiveness of the controller is numer- ically proved.展开更多
Imipramine (IM) has been widely used clinically for the treatment of mental disorders. Its actions on tissues or organs other than the nervous system also need to be understood for its proper clinical use. In this s...Imipramine (IM) has been widely used clinically for the treatment of mental disorders. Its actions on tissues or organs other than the nervous system also need to be understood for its proper clinical use. In this study, the effects of IM on adipogenic differentiation in both 3T3-L1 preadipocytes and mouse marrow stromal cells (MSCs) were investigated. The results showed that fewer adipocytic cells were developed from 3T3-L1 preadipocytes in the presence of 0.001 to 1 μmol/L of IM as compared to control. Similar inhibitory effect was also observed in mouse MSCs. The decrease in the formation of adipocytes was accompanied with significant down-regulation at mRNA expression of the early adipogenic transcription factor, peroxisome proliferator-activated receptor γ2 (PPARγ2). Western blot analysis further revealed that the protein expression of PPARγ2 was reduced markedly in ceils treated with IM at concentrations of 0.01, 0.1 and 1 μmol/L, suggesting that the suppression on PPAR72 was involved in IM's inhibition on MSCs adipogenesis. Moreover, IM at the above concentrations could stimulate the mRNA expression of β2-adrenergic receptor (AR) and β3-AR, which implicated that the effect of IM on adipogenic differentiation was partially mediated by β-ARs. Our results demonstrated for the first time that the conventional antidepressive imipramine exerts accompanied inhibitory effect on adipocyte formation, which may have possible clinical implications.展开更多
A new active control method is presented to attenuate vibrations of a flexible beam with nonlinear hysteresis and time delay. The nonlinear and hysteretic behavior of the system is illustrated by the Bouc-Wen model. B...A new active control method is presented to attenuate vibrations of a flexible beam with nonlinear hysteresis and time delay. The nonlinear and hysteretic behavior of the system is illustrated by the Bouc-Wen model. By specific transformation and augmentation of state parameters, we can convert the motion equation of the system with explicit time delay to the standard state space representation without any explicit time delay. Then the instantaneous optimal control method and Runge-Kutta method in fourth-order are applied to the controller design with time delay. Finally, in order to verify the effectivity of the time-delay controller proposed, numerical simulations are implemented. It is indicated by the simulation results that the control performance will deteriorate if neglect the time delay in process of the controller design and proposed time delay controller works well with both small and large time delay problems.展开更多
Large-scale space membrane antennas have significant potential in satellite communication,space-based early warning,and Earth observation.Because of their large size and high flexibility,the dynamic analysis and contr...Large-scale space membrane antennas have significant potential in satellite communication,space-based early warning,and Earth observation.Because of their large size and high flexibility,the dynamic analysis and control of membrane antenna are challenging.To maintain the working performance of the antenna,the pointing and surface accuracies must be strictly maintained.Therefore,the accurate dynamic modeling and effective active control of large-scale space membrane antennas have great theoretical significance and practical value,and have attracted considerable interest in recent years.This paper reviews the dynamics and active control of large-scale space membrane antennas.First,the development and status of large-scale space membrane antennas are summarized.Subsequently,the key problems in the dynamics and active control of large membrane antennas,including the dynamics of wrinkled membranes,large-amplitude nonlinear vibration,nonlinear model reduction,rigid-flexible-thermal coupling dynamic modeling,on-orbit modal parameter identification,active vibration control,and wave-based vibration control,are discussed in detail.Finally,the research outlook and future trends are presented.展开更多
To address the challenges in pathological diagnosis,a pathological metaverse called the artificial intelligence(AI)-link omnipotent pathological robot(ALOPR)has recently been developed.ALOPR comes from the field of re...To address the challenges in pathological diagnosis,a pathological metaverse called the artificial intelligence(AI)-link omnipotent pathological robot(ALOPR)has recently been developed.ALOPR comes from the field of remote sensing,in which images from different sensors are analyzed in a wide spectral range.It is designed for high-resolution multispectral imaging and intelligent analysis of tumor slices with multiple biomarkers.Unlike the traditional digital pathological slice scanner,ALOPR integrates imaging,visualization,AI multimodal diagnosis,spatial omics analysis,data encryption,accurate quantification,and the tumor microenvironment.This integration,along with improvements in efficiency,accuracy,and flexibility,enables ALOPR(Figure 1)to be used in hospitals at multiple levels,including rural hospitals,county hospitals,community hospitals,and tertiary hospitals.展开更多
The performance of space antennas is significantly affected by thermal deformation owing to the harsh thermal environment in space.This results in potential degradation in pointing accuracy and overall functionality.T...The performance of space antennas is significantly affected by thermal deformation owing to the harsh thermal environment in space.This results in potential degradation in pointing accuracy and overall functionality.This study focused on the analysis and control of thermal deformation in large-scale two-dimensional planar phased array antennas.Employing the finite element method,we developed a comprehensive thermal and structural model of the antenna.This enabled us to simulate the steady-state temperature field and the associated thermal deformation at various orbital positions.To address this deformation issue,we propose an innovative shape-control approach that utilizes distributed cable actuators.The shape control challenge was reformulated into a layered optimization problem concerning actuator placement and force application.In the outer optimization layer,a discrete particle swarm optimization algorithm was used to determine the optimal locations for the actuators.In the inner optimization layer,quadratic programming was subsequently applied to calculate the optimal control forces for each actuator.We validated the proposed method by numerically simulating a novel large-scale two-dimensional planar phased array antenna.The results demonstrated the effectiveness of our method in mitigating thermal deformation and maintaining the structural integrity and shape accuracy of the antennas.展开更多
基金supported by the Natural Science Foundation of China(Grant No.11772187)the Natural Science Foundation of Shanghai(Grant No.16ZR1436200)
文摘The placement optimization of piezoelectric actuators and active vibration control of a membrane structure are studied in this paper. The classical linear quadratic regulator con- trollers are designed to suppress the unwanted vibration. Simulation results indicate that the optimal locations of piezoelectric actuators are affected deeply by the additional mass and stiff- ness of actuators, the computational efficiency of particle swarm optimizer is higher than that of genetic algorithm for this particular problem, and the control performance of optimally placed actuators is better than that of non-optimally placed actuators.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.12172214 and 12102252)the China Postdoctoral Science Foundation(Grant No.2021M692070)the Industry-University-Research Cooperation Fund of Shanghai Institute of Aerospace System Engineering(Grant No.USCAST2021-12).
文摘Due to obvious advantages,such as light weight,easy folding and deployment and high accuracy of optical imaging,the membrane diffraction large space telescope has currently been one of the hot research topics.Because of the influence of external disturbance and attitude adjustment,the large space telescope will occur a certain degree of vibration inevitably,affecting the imaging accuracy of the space telescope for Earth.Thus,to satisfy the requirement of imaging accuracy,it is necessary for the space telescope to adopt appropriate vibration control methods.In this paper,the active vibration control of the large space telescope is studied using cables as active actuators.Considering that cables can work under tension but not under pression and the tensile capacity is limited,the unilateral and saturated characteristics of cable actuators are taken into account during control design in this paper.Firstly,the dynamic model of the membrane diffraction space telescope is established using the finite element method(FEM).Secondly,in combination with the linear quadratic regulator(LQR)and the bang-bang regulator,a piecewise cost function is used to design the active vibration control law.Next,the controllability criterion and the genetic algorithm(GA)are adopted to determine the optimal positions of cable actuators.Finally,the validity of the proposed control method is verified by numerical simulations.Simulation results indicate that the vibration of the space telescope can be suppressed effectively using the proposed control method,and the imaging requirements of the telescope may be realized using the least cable actuators,whose minimum quantity and position distribution are determined in this paper.
基金supported by the National Natural Science Foundation of China(10772112 and 10472065)the Key Project of Ministry of Education of China(107043)+2 种基金the Key Scientific Project of Shanghai Municipal Education Commission(09ZZ 17)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20070248032)the Research Project of State Key Laboratory of Ocean Engineering of China(GKZD010807)
文摘The first-order approximation coupling (FOAC) model was proposed recently for dynamics and control of flexible hub-beam systems. This model may deal with system dynamics for both low and high rotation speed, while the classical zeroth-order approximation coupling (ZOAC) model is only available for low rotation speed. This paper assumes the FOAC model to present experimental study of active positioning control of a flexible hub-beam system. Linearization and nonlinear control strategies are both considered. An experiment system based on a DSP TMS320F2812 board is introduced. The difference between linearization and nonlinear control strategies are studied both numerically and experimentally. Simulation and experimental results indicate that, linearized controller can make the system reach an expected position with suppressed vibration of flexible beam, but the time taken to position is longer than expected, whereas nonlinear controller works well with precise positioning, suppression of vibration and time control.
基金Project supported by the Key Project (No. 11132001)the General Projects (Nos. 11072146 and 11002087)the National Natural Science Foundation of China
文摘This paper studies the low-order dynamic modeling and active control of a flexible plate and provides experimental verification. First based on the input-output data of the sys- tem, the Markov parameters of the system are identified using the method of observer/Kalman filter identification (OKID). Then a low-order state-space model is built using the eigensystem realization algorithm (ERA). Finally, a linear quadratic Gaussian (LQG) controller is designed based on the low-order state-space model. Experimental results have proved the effectiveness and feasibility of the research.
基金Project supported by the National Natural Science Foundation of China(Nos.11132001,11272202,and 11472171)the Key Scientific Project of Shanghai Municipal Education Commission(No.14ZZ021)the Natural Science Foundation of Shanghai(No.14ZR1421000)
文摘Variable geometry truss manipulator (VGTM) has potential to work in the future space applications, of which a dynamic model is important to dynamic analysis and control of the system. In this paper, an approach is presented to model the dynamic equations of a VGTM by independent variables, which consists of two double-octahedral truss units and a 3-revolute-prismatic-spherical (3-RPS) parallel manipulator. In this ap- proach, the kinematic recursive relations of two adjacent bodies and geometric constrains are used to deduce the kinematic equations of the VGTM, and Jourdain's velocity varia- tion principle is adopted to establish the dynamic equations of the system. The validity of the proposed dynamic model is verified by comparison of numerical simulations with the software ADAMS. Besides, an active controller for trajectory tracking of the system is designed by the computed torque method. The effectiveness of the controller is numer- ically proved.
基金supported by a grant from UGC Area of Excellence project "Chinese Medicine Research and Further Development"(No.AoE/B-10/01)the Shenzhen Key Laboratory Funding Scheme of Shenzhen Municipal Government, Shenzhen Double Hundred Project
文摘Imipramine (IM) has been widely used clinically for the treatment of mental disorders. Its actions on tissues or organs other than the nervous system also need to be understood for its proper clinical use. In this study, the effects of IM on adipogenic differentiation in both 3T3-L1 preadipocytes and mouse marrow stromal cells (MSCs) were investigated. The results showed that fewer adipocytic cells were developed from 3T3-L1 preadipocytes in the presence of 0.001 to 1 μmol/L of IM as compared to control. Similar inhibitory effect was also observed in mouse MSCs. The decrease in the formation of adipocytes was accompanied with significant down-regulation at mRNA expression of the early adipogenic transcription factor, peroxisome proliferator-activated receptor γ2 (PPARγ2). Western blot analysis further revealed that the protein expression of PPARγ2 was reduced markedly in ceils treated with IM at concentrations of 0.01, 0.1 and 1 μmol/L, suggesting that the suppression on PPAR72 was involved in IM's inhibition on MSCs adipogenesis. Moreover, IM at the above concentrations could stimulate the mRNA expression of β2-adrenergic receptor (AR) and β3-AR, which implicated that the effect of IM on adipogenic differentiation was partially mediated by β-ARs. Our results demonstrated for the first time that the conventional antidepressive imipramine exerts accompanied inhibitory effect on adipocyte formation, which may have possible clinical implications.
基金supported by the Key Project(11132001)the General Projects of Natural Science Foundation of China(11072146,11272202,and 11002087)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20110073110008)
文摘A new active control method is presented to attenuate vibrations of a flexible beam with nonlinear hysteresis and time delay. The nonlinear and hysteretic behavior of the system is illustrated by the Bouc-Wen model. By specific transformation and augmentation of state parameters, we can convert the motion equation of the system with explicit time delay to the standard state space representation without any explicit time delay. Then the instantaneous optimal control method and Runge-Kutta method in fourth-order are applied to the controller design with time delay. Finally, in order to verify the effectivity of the time-delay controller proposed, numerical simulations are implemented. It is indicated by the simulation results that the control performance will deteriorate if neglect the time delay in process of the controller design and proposed time delay controller works well with both small and large time delay problems.
基金the National Natural Science Foundation of China(Grant Nos.12102252 and 12172214)Natural Science Foundation of Chongqing(Grant No.CSTB2023NSCQ-MSX0761).
文摘Large-scale space membrane antennas have significant potential in satellite communication,space-based early warning,and Earth observation.Because of their large size and high flexibility,the dynamic analysis and control of membrane antenna are challenging.To maintain the working performance of the antenna,the pointing and surface accuracies must be strictly maintained.Therefore,the accurate dynamic modeling and effective active control of large-scale space membrane antennas have great theoretical significance and practical value,and have attracted considerable interest in recent years.This paper reviews the dynamics and active control of large-scale space membrane antennas.First,the development and status of large-scale space membrane antennas are summarized.Subsequently,the key problems in the dynamics and active control of large membrane antennas,including the dynamics of wrinkled membranes,large-amplitude nonlinear vibration,nonlinear model reduction,rigid-flexible-thermal coupling dynamic modeling,on-orbit modal parameter identification,active vibration control,and wave-based vibration control,are discussed in detail.Finally,the research outlook and future trends are presented.
基金Climb Plan of Hunan Cancer Hospital(no.ZX2021005)Hunan Provincial Natural Science Foundation(no.2023JJ60464)+1 种基金We acknowledged Weiwei Zhang(Turpan city people's hospital)Qinghua Li(The Affiliated Hospital of Guilin Medical University)for their support on our research.
文摘To address the challenges in pathological diagnosis,a pathological metaverse called the artificial intelligence(AI)-link omnipotent pathological robot(ALOPR)has recently been developed.ALOPR comes from the field of remote sensing,in which images from different sensors are analyzed in a wide spectral range.It is designed for high-resolution multispectral imaging and intelligent analysis of tumor slices with multiple biomarkers.Unlike the traditional digital pathological slice scanner,ALOPR integrates imaging,visualization,AI multimodal diagnosis,spatial omics analysis,data encryption,accurate quantification,and the tumor microenvironment.This integration,along with improvements in efficiency,accuracy,and flexibility,enables ALOPR(Figure 1)to be used in hospitals at multiple levels,including rural hospitals,county hospitals,community hospitals,and tertiary hospitals.
基金the National Natural Science Foundation of China(grant numbers 12172214 and 12102252)Fundamental Research Funds for the Central Universities(grant number USCAST2023-25).
文摘The performance of space antennas is significantly affected by thermal deformation owing to the harsh thermal environment in space.This results in potential degradation in pointing accuracy and overall functionality.This study focused on the analysis and control of thermal deformation in large-scale two-dimensional planar phased array antennas.Employing the finite element method,we developed a comprehensive thermal and structural model of the antenna.This enabled us to simulate the steady-state temperature field and the associated thermal deformation at various orbital positions.To address this deformation issue,we propose an innovative shape-control approach that utilizes distributed cable actuators.The shape control challenge was reformulated into a layered optimization problem concerning actuator placement and force application.In the outer optimization layer,a discrete particle swarm optimization algorithm was used to determine the optimal locations for the actuators.In the inner optimization layer,quadratic programming was subsequently applied to calculate the optimal control forces for each actuator.We validated the proposed method by numerically simulating a novel large-scale two-dimensional planar phased array antenna.The results demonstrated the effectiveness of our method in mitigating thermal deformation and maintaining the structural integrity and shape accuracy of the antennas.