Emerging and recurrent infectious diseases caused by human coronaviruses(HCoVs)continue to pose a significant threat to global public health security.In light of this ongoing threat,the development of a broad-spectrum...Emerging and recurrent infectious diseases caused by human coronaviruses(HCoVs)continue to pose a significant threat to global public health security.In light of this ongoing threat,the development of a broad-spectrum drug to combat HCoVs is an urgently priority.Herein,we report a series of anti-pan-coronavirus ssDNA aptamers screened using Systematic Evolution of Ligands by Exponential Enrichment(SELEX).These aptamers have nanomolar affinity with the nucleocapsid protein(NP)of Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)and also show excellent binding efficiency to the N proteins of both SARS,MERS,HCoV-OC43 and-NL63 with affinity KD values of 1.31 to 135.36 nM.Such aptamer-based therapeutics exhibited potent antiviral activity against both the authentic SARS-CoV-2 prototype strain and the Omicron variant(BA.5)with EC50 values at 2.00 nM and 41.08 nM,respectively.The protein docking analysis also evidenced that these aptamers exhibit strong affinities for N proteins of pan-coronavirus and other HCoVs(−229E and-HKU1).In conclusion,we have identified six aptamers with a high pan-coronavirus antiviral activity,which could potentially serve as an effective strategy for preventing infections by unknown coronaviruses and addressing the ongoing global health threat.展开更多
基金supported by the National Key Research&Development Program of China(2021YFA1201000,2021YFC2302400,2023YFC2606004)the Guangxi Science and Technology Development Program(AB20117001)+5 种基金the National Natural Science Foundation of China(82204263,32171394,32001008)the Fundamental Research Funds for the Central Universities(3332022055,2022CX01013)the China Postdoctoral Science Foundation(2022M720438)the Beijing Nova Program(Interdisciplinary Cooperation Project)from Beijing Municipal Science&Technology Commission(20220484207)We knowledge the Beijing Institute of Technology Research Fund Program for Young Scholars(XSQD-6120220072)We thank the Biological and Medical Engineering Core Facilities,and Analysis&Testing Center,Beijing Institute of Technology for supporting experimental equipment,and staffs for valuable help with technical support.
文摘Emerging and recurrent infectious diseases caused by human coronaviruses(HCoVs)continue to pose a significant threat to global public health security.In light of this ongoing threat,the development of a broad-spectrum drug to combat HCoVs is an urgently priority.Herein,we report a series of anti-pan-coronavirus ssDNA aptamers screened using Systematic Evolution of Ligands by Exponential Enrichment(SELEX).These aptamers have nanomolar affinity with the nucleocapsid protein(NP)of Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)and also show excellent binding efficiency to the N proteins of both SARS,MERS,HCoV-OC43 and-NL63 with affinity KD values of 1.31 to 135.36 nM.Such aptamer-based therapeutics exhibited potent antiviral activity against both the authentic SARS-CoV-2 prototype strain and the Omicron variant(BA.5)with EC50 values at 2.00 nM and 41.08 nM,respectively.The protein docking analysis also evidenced that these aptamers exhibit strong affinities for N proteins of pan-coronavirus and other HCoVs(−229E and-HKU1).In conclusion,we have identified six aptamers with a high pan-coronavirus antiviral activity,which could potentially serve as an effective strategy for preventing infections by unknown coronaviruses and addressing the ongoing global health threat.