The effects of the concentration of dissolved total organic carbon (TOC), the TOC/Br- ratio, bromide ion levels, the chlorine to ammonia-N ratio (Cl:N), the monochloramine dose and the chlorine dose on the formation o...The effects of the concentration of dissolved total organic carbon (TOC), the TOC/Br- ratio, bromide ion levels, the chlorine to ammonia-N ratio (Cl:N), the monochloramine dose and the chlorine dose on the formation of trihalomethanes (THMs) (including chloroform, bromodichloromethane, chlorodibromomethane, and bromoform) from chlorination were investigated using aqueous humic acid (HA) solutions. The profile of the chloramine decay was also studied under various bromide ion concentrations. Monochloramine decayed in the presence of organic material and bromide ions. The percentage of chloroform and brominated THMs varied according to the TOC/Br- ratio. Total THMs (TTHMs) formation increased from 112 to 190 μg/L with the increase concentrations of bromide ions from 0.67 to 6.72 mg/L, but the chlorine-substituted THMs were replaced by bromine-substituted THMs. A strong linear correlation was obtained between the monochloramine dose and the formation of THMs for Cl:N ratios of 3:1 and 5:1. These ratios had a distinct effect on the formation of chloroform but had little impact on the formation of bromodichloromethane or chlorodibromomethane. The presence of bromide ions increased the rate of monochloramine decay.展开更多
Using the neutral grounding method by the resistance in 110?kV system, it can limit the voltage sag and short circuit current when one-phase grounding fault occurred, but it will change the sequence of the network str...Using the neutral grounding method by the resistance in 110?kV system, it can limit the voltage sag and short circuit current when one-phase grounding fault occurred, but it will change the sequence of the network structure and parameters. This paper analyzes the size and distribution of zero sequence voltage and current when one-phase grounding fault occurred in the 110 kV resistance grounding system, and puts forward the grounding protection configuration setting principle of this system combining the power supplying characteristics of 110?kV distribution network. In a reforming substation as an example, the grounding protection of 110 kV lines and transformer have been set and calculated.展开更多
The bulk superconductors of the Bi-Sr-Ca-Cu-O system with resistance close to zero at the temperature above 110K have been prepared by solidstate reaction techniques.The onset of,transition is 125K.and the resistance ...The bulk superconductors of the Bi-Sr-Ca-Cu-O system with resistance close to zero at the temperature above 110K have been prepared by solidstate reaction techniques.The onset of,transition is 125K.and the resistance of the bulk samples has a sharp drop(~98%)near the Tc and is close to zero at 111K.Samples show a good stability.It has been implied that completely cutting off the"resistive tail"of this bulk superconductors should be possible.展开更多
This paper researches the voltage transfer characteristics when one-phase ground fault occurred in the resistance grounding system, by using the theory of the asymmetric variable characteristics and the sequence netwo...This paper researches the voltage transfer characteristics when one-phase ground fault occurred in the resistance grounding system, by using the theory of the asymmetric variable characteristics and the sequence network analysis of the -11 transformer, and concludes the scope of voltage sag and swell and the degree of power frequency overvoltage and their influencing factors in the 110 kV resistance grounding system. Accordingly this paper puts forward the resistance choosing principle: the resistance grounding coefficient must be equal to or greater than 10. So it can not only wipe out the voltage sag and voltage swell but also make sure the overvoltage is limited to electrical equipment allowing range. The method mentioned above is verified by simulation results of a 110 kV power system in ATP.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 50878164)the Key Special Program on the S & T for the Pollution Control and Treatment of Water Bodies (No. 2008ZX07-422-005)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China (No. 200802471037)the Foundation of Key Laboratory of Yangtze River Water Environment, Ministry of Edu-cation, Tongji University (No. YRWEY1001), China
文摘The effects of the concentration of dissolved total organic carbon (TOC), the TOC/Br- ratio, bromide ion levels, the chlorine to ammonia-N ratio (Cl:N), the monochloramine dose and the chlorine dose on the formation of trihalomethanes (THMs) (including chloroform, bromodichloromethane, chlorodibromomethane, and bromoform) from chlorination were investigated using aqueous humic acid (HA) solutions. The profile of the chloramine decay was also studied under various bromide ion concentrations. Monochloramine decayed in the presence of organic material and bromide ions. The percentage of chloroform and brominated THMs varied according to the TOC/Br- ratio. Total THMs (TTHMs) formation increased from 112 to 190 μg/L with the increase concentrations of bromide ions from 0.67 to 6.72 mg/L, but the chlorine-substituted THMs were replaced by bromine-substituted THMs. A strong linear correlation was obtained between the monochloramine dose and the formation of THMs for Cl:N ratios of 3:1 and 5:1. These ratios had a distinct effect on the formation of chloroform but had little impact on the formation of bromodichloromethane or chlorodibromomethane. The presence of bromide ions increased the rate of monochloramine decay.
文摘Using the neutral grounding method by the resistance in 110?kV system, it can limit the voltage sag and short circuit current when one-phase grounding fault occurred, but it will change the sequence of the network structure and parameters. This paper analyzes the size and distribution of zero sequence voltage and current when one-phase grounding fault occurred in the 110 kV resistance grounding system, and puts forward the grounding protection configuration setting principle of this system combining the power supplying characteristics of 110?kV distribution network. In a reforming substation as an example, the grounding protection of 110 kV lines and transformer have been set and calculated.
文摘The bulk superconductors of the Bi-Sr-Ca-Cu-O system with resistance close to zero at the temperature above 110K have been prepared by solidstate reaction techniques.The onset of,transition is 125K.and the resistance of the bulk samples has a sharp drop(~98%)near the Tc and is close to zero at 111K.Samples show a good stability.It has been implied that completely cutting off the"resistive tail"of this bulk superconductors should be possible.
文摘This paper researches the voltage transfer characteristics when one-phase ground fault occurred in the resistance grounding system, by using the theory of the asymmetric variable characteristics and the sequence network analysis of the -11 transformer, and concludes the scope of voltage sag and swell and the degree of power frequency overvoltage and their influencing factors in the 110 kV resistance grounding system. Accordingly this paper puts forward the resistance choosing principle: the resistance grounding coefficient must be equal to or greater than 10. So it can not only wipe out the voltage sag and voltage swell but also make sure the overvoltage is limited to electrical equipment allowing range. The method mentioned above is verified by simulation results of a 110 kV power system in ATP.