The ammonia electrolysis is a highly efficient and energy-saving method for ultra-pure hydrogen generation, which highly relies on electrocatalytic performance of electrocatalysts. In this work, high-quality platinum(...The ammonia electrolysis is a highly efficient and energy-saving method for ultra-pure hydrogen generation, which highly relies on electrocatalytic performance of electrocatalysts. In this work, high-quality platinum(Pt) nanocubes(Pt-NCs) with 4.5 nm size are achieved by facile hydrothermal synthesis. The physical morphology and structure of Pt-NCs are exhaustively characterized, revealing that Pt-NCs with special {100} facets have excellent uniformity, good dispersity and high crystallinity. Meanwhile, the electrocatalytic performance of Pt-NCs for ammonia electrolysis are carefully investigated in alkaline solutions, which display outstanding electroactivity and stability for both ammonia electrooxidation reaction(AEOR) and hydrogen evolution reaction(HER) in KOH solution. Furthermore, a symmetric Pt-NCs||Pt-NCs ammonia electrolyzer based on bifunctional Pt-NCs electrocatalyst is constructed, which only requires 0.68 V electrolysis voltage for hydrogen generation. Additionally, the symmetric Pt-NCs||Pt-NCs ammonia electrolyzer has excellent reversible switch capability for AEOR at anode and HER at cathode, showing outstanding alternating operation ability for ammonia electrolysis.展开更多
The chlorine evolution reaction(CER)serves as the cornerstone and crucial step in the conversion of chloride ions to chlorine gas,while accompanied by the occurrence of the oxygen evolution reaction(OER)in practical p...The chlorine evolution reaction(CER)serves as the cornerstone and crucial step in the conversion of chloride ions to chlorine gas,while accompanied by the occurrence of the oxygen evolution reaction(OER)in practical processes that lead to difficulty in achieving the purity requirements of the product Cl_(2)for industrial applications.Pd-doped Co_(3)O_(4) nanoneedles(Pd-Co_(3)O_(4)NNs)were synthesized via hydrothermal-calcination methods.Pd sites induce electron delocalization,creating asymmetric active Co sites in Co_(3)O_(4),enhancing CER performance.The unique nanoneedle arrays of the designed catalysts increase the number of exposed active sites,facilitating electron transfer and endowing the Pd-Co_(3)O_(4)NNs with a tip catalytic effect,further optimizing the catalytic reaction kinetics of CER with an overpotential of 118 mV at 100 mA cm^(-2)and a Tafel slope of 53.93 mV dec^(-1).The density functional theory(DFT)calculations reveal that Pd incorporation at octahedral sites triggers charge redistribution and d-band center downshift,weakening intermediate adsorption and sustaining catalytic activity.This work offers new insights into noble-metal-doped spinel oxides,highlighting their potential for industrial applications.展开更多
Realizing the hydrogen economy by water electrolysis is an attractive approach for hydrogen production,while the efficient and stable bifunctional catalysts under high current densities are the bottleneck that limits ...Realizing the hydrogen economy by water electrolysis is an attractive approach for hydrogen production,while the efficient and stable bifunctional catalysts under high current densities are the bottleneck that limits the half-cell reactions of water splitting.Here,we propose an approach of hydrothermal and thermal annealing methods for robust MoO_(2)/MoNi_(4)@Ru/RuO_(2) heterogeneous cuboid array electrocatalyst with multiplying surface-active sites by depositing a monolayer amount of Ru.Benefiting from abundant MoO_(2)/MoNi_(4)@Ru/RuO_(2)heterointerfaces,MoO_(2)/MoNi_(4)@Ru/RuO_(2) heterogeneous cuboid array electrocatalysts effectively drive the alkaline water splitting with superior hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)performances.The synthesized MoO_(2)/MoNi_(4)@Ru/RuO_(2) has high HER activity,which realizes the working overpotentials of 48 mV at 50 mA·cm^(-2),further achieving overpotentials of 230 mv for industry-level 1000 mA·cm^(-2) in alkaline water electrolysis.Moreover,it also showed an enhanced OER activity than commercial RuO_(2) with a small overpotential of 280 mV at 200 mA·cm^(-2) in alkaline media.When building an electrolyzer with electrodes of(-)MoO_(2)/MoNi_(4)@Ru/RuO_(2)IIMo02/MoNig@Ru/RuO_(2)(+),a cell voltage of 1.63 V and 1.75 V is just required to support the current density of 200 mA·cm^(-2) and 500 mA-cm^(-2) in alkaline water electrolysis,much lower than that of the electrolyzer of(-)Pt/CIIRuO_(2)(+).This work demonstrates that MoO_(2)/MoNig@Ru/RuO_(2) heterogeneous nanosheet arrays are promising candidates for industrial water electrolysis applications,providing a possibility for the exploration of water electrolysis with a large currentdensity.展开更多
基金sponsored by the National Natural Science Foundation of China (21875133 and 51873100)the Fundamental Research Funds for the Central Universities (GK201901002 and GK201902014)the 111 Project (B14041)。
文摘The ammonia electrolysis is a highly efficient and energy-saving method for ultra-pure hydrogen generation, which highly relies on electrocatalytic performance of electrocatalysts. In this work, high-quality platinum(Pt) nanocubes(Pt-NCs) with 4.5 nm size are achieved by facile hydrothermal synthesis. The physical morphology and structure of Pt-NCs are exhaustively characterized, revealing that Pt-NCs with special {100} facets have excellent uniformity, good dispersity and high crystallinity. Meanwhile, the electrocatalytic performance of Pt-NCs for ammonia electrolysis are carefully investigated in alkaline solutions, which display outstanding electroactivity and stability for both ammonia electrooxidation reaction(AEOR) and hydrogen evolution reaction(HER) in KOH solution. Furthermore, a symmetric Pt-NCs||Pt-NCs ammonia electrolyzer based on bifunctional Pt-NCs electrocatalyst is constructed, which only requires 0.68 V electrolysis voltage for hydrogen generation. Additionally, the symmetric Pt-NCs||Pt-NCs ammonia electrolyzer has excellent reversible switch capability for AEOR at anode and HER at cathode, showing outstanding alternating operation ability for ammonia electrolysis.
基金supported by the National Natural Science Foundation of China(Grant Nos.52402273,52272222,52072197)Youth Innovation Team Development Program of Shandong Higher Education Institutions(Grant No.2022KJ155)Taishan Scholar Young Talent Program(Grant No.tsqn201909114)。
文摘The chlorine evolution reaction(CER)serves as the cornerstone and crucial step in the conversion of chloride ions to chlorine gas,while accompanied by the occurrence of the oxygen evolution reaction(OER)in practical processes that lead to difficulty in achieving the purity requirements of the product Cl_(2)for industrial applications.Pd-doped Co_(3)O_(4) nanoneedles(Pd-Co_(3)O_(4)NNs)were synthesized via hydrothermal-calcination methods.Pd sites induce electron delocalization,creating asymmetric active Co sites in Co_(3)O_(4),enhancing CER performance.The unique nanoneedle arrays of the designed catalysts increase the number of exposed active sites,facilitating electron transfer and endowing the Pd-Co_(3)O_(4)NNs with a tip catalytic effect,further optimizing the catalytic reaction kinetics of CER with an overpotential of 118 mV at 100 mA cm^(-2)and a Tafel slope of 53.93 mV dec^(-1).The density functional theory(DFT)calculations reveal that Pd incorporation at octahedral sites triggers charge redistribution and d-band center downshift,weakening intermediate adsorption and sustaining catalytic activity.This work offers new insights into noble-metal-doped spinel oxides,highlighting their potential for industrial applications.
基金sponsored by the National Natural Science Foundation of China(51772162,52072197)the China Postdoctoral Science Foundation(2023M732132)+4 种基金Youth Innovation Team Development Program of Shandong Higher Education Institutions(2022KJ155)Outstanding Youth Foundation of Shandong Province,China(ZR2019JQ14)Taishan Scholar Young Talent Program(tsqn201909114)Major Scientific and Technological Innovation Project(2019JZZY020405)Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant(ZR2020ZD09).
文摘Realizing the hydrogen economy by water electrolysis is an attractive approach for hydrogen production,while the efficient and stable bifunctional catalysts under high current densities are the bottleneck that limits the half-cell reactions of water splitting.Here,we propose an approach of hydrothermal and thermal annealing methods for robust MoO_(2)/MoNi_(4)@Ru/RuO_(2) heterogeneous cuboid array electrocatalyst with multiplying surface-active sites by depositing a monolayer amount of Ru.Benefiting from abundant MoO_(2)/MoNi_(4)@Ru/RuO_(2)heterointerfaces,MoO_(2)/MoNi_(4)@Ru/RuO_(2) heterogeneous cuboid array electrocatalysts effectively drive the alkaline water splitting with superior hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)performances.The synthesized MoO_(2)/MoNi_(4)@Ru/RuO_(2) has high HER activity,which realizes the working overpotentials of 48 mV at 50 mA·cm^(-2),further achieving overpotentials of 230 mv for industry-level 1000 mA·cm^(-2) in alkaline water electrolysis.Moreover,it also showed an enhanced OER activity than commercial RuO_(2) with a small overpotential of 280 mV at 200 mA·cm^(-2) in alkaline media.When building an electrolyzer with electrodes of(-)MoO_(2)/MoNi_(4)@Ru/RuO_(2)IIMo02/MoNig@Ru/RuO_(2)(+),a cell voltage of 1.63 V and 1.75 V is just required to support the current density of 200 mA·cm^(-2) and 500 mA-cm^(-2) in alkaline water electrolysis,much lower than that of the electrolyzer of(-)Pt/CIIRuO_(2)(+).This work demonstrates that MoO_(2)/MoNig@Ru/RuO_(2) heterogeneous nanosheet arrays are promising candidates for industrial water electrolysis applications,providing a possibility for the exploration of water electrolysis with a large currentdensity.