期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Study on Fine Crustal Structure of the Sanhe-Pinggu Earthquake (M8.0) Region by Deep Seismic Reflection Profiling 被引量:3
1
作者 ZhangXiankang ZhaoJinren +7 位作者 LiuGuohua SongWenrong LiuBaojin ZhaoChengbin ChengShuangxi LiuJianda gumenglin SunZhenguo 《Earthquake Research in China》 2003年第2期122-133,共12页
Two near-vertical deep seismic reflection profiles (140km-long, 24-fold) were completed in the 1679 Sanhe-Pinggu earthquake (M8.0) region. The profiles ran through the Xiadian fault and the Ershilichangshan fault. The... Two near-vertical deep seismic reflection profiles (140km-long, 24-fold) were completed in the 1679 Sanhe-Pinggu earthquake (M8.0) region. The profiles ran through the Xiadian fault and the Ershilichangshan fault. The profiling result shows that the crust in this region is divided into the upper crust, the lower crust and the crust-mantle transitional zone by two powerful laminated reflectors: one at the two-way travel-time of about 7.0s (21km), the other at about 11.0~12.5s (33~37km). Crustal structure varies significantly in vertical direction. The shallow part is characterized by obvious stratification, multilayers and complexity. The upper crust on the whole features reflection “transparency”, while the lower crust features distinct reflectivity. Crustal structure also varies a lot in the lateral direction. The main fracture in this region is the deep fault under the Xiadian fault. This deep fault is steeply inclined (nearly vertical), and is supposed to be the causative fault of the Sanhe-Pinggu M8.0 earthquake. The two profiles respectively reveal the existence of local strong reflectivity in the lower crust and the lower part of the upper crust, which is assumed to be a dike or rock mass formed by the upwelling and cooling down of materials from the upper mantle. Magmatic activity in this part brought about differences in regional stress distribution, which then gave rise to the formation of the deep fault. That is supposed to be the deep structural setting for the Sanhe-Pinggu M8.0 earthquake. 展开更多
关键词 The Sanhe-Pinggu meizoseismal region Deep reflection profiling Fine structure study of earthquake source
在线阅读 下载PDF
The Activity of Major Faults and the Hydrothermal Alteration Zone at Tianchi Volcano of Changbaishan
2
作者 LiuMingjun gumenglin +2 位作者 SunZhenguo WeiHaiquan JinBolu 《Earthquake Research in China》 2004年第3期253-262,共10页
It is found by field investigation that the near horizontal top surface of the brown or brick-red hydrothermal alteration zone varies obviously in elevation at different sections of the same layer on the caldera’s in... It is found by field investigation that the near horizontal top surface of the brown or brick-red hydrothermal alteration zone varies obviously in elevation at different sections of the same layer on the caldera’s inner wall of Tianchi, with that at the north section near the Tianwen Peak about 110 m higher than that at the south near the Jiangjun Peak in Korea. The top surface of the hydrothermal alteration zone can be taken as key horizon to tectonic movement. The difference indicates that the total uplift height of the NW wall of the Liudaogou-Tianchi-Jingfengshan fault, the principal fault trending NE at Tianchi, is bigger than that of the SE wall ever since the occurrence of hydrothermal alteration. This also explains why the topography in the northwest side of Tianchi is steeper and with more developed river system than in the southeast. The uplifting of the northeastern wall is bigger than that of the southwest along the principal NW-trend fault, namely, the Baishanzhen-Tianchi-Jince fault. It is observed from characters of hydrothermal alteration and the palaeoresiduum, that the recent vertical movement rate along the principal NE-trend fault is larger than that of the principal NW-trend fault. The two faults intersect at Tianchi, dividing the volcano into 4 blocks, with the uplift magnitudes decreasing successively in the order of the north, the west, the east and the south block. The biggest uplift of the north block corresponds well to the shallow magma batch in the north of Tianchi observed by DSS and telluric electromagnetic sounding, and etc. and they may be related with the causes. 展开更多
关键词 Tianchi volcano Major fault Caldera's inner wall Hydrothermal alteration Different uplift
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部