期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Modeling segregated solutes in plastically deformed alloys using coupled molecular dynamics-Monte Carlo simulations
1
作者 Hariprasath Ganesan godehard sutmann 《Journal of Materials Science & Technology》 2025年第10期98-108,共11页
A microscopic understanding of the complex solute-defect interaction is pivotal for optimizing the alloy’s macroscopic mechanical properties.Simulating solute segregation in a plastically deformed crystalline system ... A microscopic understanding of the complex solute-defect interaction is pivotal for optimizing the alloy’s macroscopic mechanical properties.Simulating solute segregation in a plastically deformed crystalline system at atomic resolution remains challenging.The objective is to efficiently model and predict a phys-ically informed segregated solute distribution rather than simulating a series of diffusion kinetics.To ad-dress this objective,we coupled molecular dynamics(MD)and Monte Carlo(MC)methods using a novel method based on virtual atoms technique.We applied our MD-MC coupling approach to model off-lattice carbon(C)solute segregation in nanoindented Fe-C samples containing complex dislocation networks.Our coupling framework yielded the final configuration through efficient parallelization and localized en-ergy computations,showing C Cottrell atmospheres near dislocations.Different initial C concentrations resulted in a consistent trend of C atoms migrating from less crystalline distortion to high crystalline distortion regions.Besides unraveling the strong spatial correlation between local C concentration and defect regions,our results revealed two crucial aspects of solute segregation preferences:(1)defect ener-getics hierarchy and(2)tensile strain fields near dislocations.The proposed approach is generic and can be applied to other material systems as well. 展开更多
关键词 Molecular dynamics Monte Carlo Virtual atoms Solute segregation Cottrell atmosphere Off-lattice
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部