In this new era of time-domain and multi-messenger astronomy,various new transients and new phenomena are constantly being discovered thanks to the rapid advances in observations,which provide the excellent opportunit...In this new era of time-domain and multi-messenger astronomy,various new transients and new phenomena are constantly being discovered thanks to the rapid advances in observations,which provide the excellent opportunity to study the physics in the extreme environments.The enhanced X-ray Timing and Polarimetry mission(eXTP),planned to be launched in 2030,has several key advantages,including advanced polarimetry,high sensitivity&large effective area,and wide energy range coverage,which make it a groundbreaking project in high-energy astrophysics.In this article,we briefly introduce the potential time-domain and multi-messenger targets for eXTP,including gravitational-wave(GW)counterparts,gamma-ray bursts(GRBs),magnetars and fast radio bursts(FRBs),tidal disruption events(TDEs),supernovae,high energy neutrinos and TeV active galactic nucleus(AGNs),and so on.We discuss the advantages of future eXTP observations for detecting these sources,their detection capabilities,the abilities to distinguish theoretical models,and their applications in gravity and cosmology.展开更多
In this paper,we present the current status of the enhanced X-ray Timing and Polarimetry mission,which has been fully approved for launch in 2030.eXTP is a space science mission designed to study fundamental physics u...In this paper,we present the current status of the enhanced X-ray Timing and Polarimetry mission,which has been fully approved for launch in 2030.eXTP is a space science mission designed to study fundamental physics under extreme conditions of matter density,gravity,and magnetism.The mission aims at determining the equation of state of matter at supra-nuclear density,measuring the effects of quantum electro-dynamics,and understanding the dynamics of matter in strong-field gravity.In addition to investigating fundamental physics,the eXTP mission is poised to become a leading observatory for time-domain and multi-messenger astronomy in the 2030s,as well as providing observations of unprecedented quality on a variety of galactic and extragalactic objects.After briefly introducing the history and a summary of the scientific objectives of the eXTP mission,this paper presents a comprehensive overview of:(1)the cutting-edge technology,technical specifications,and anticipated performance of the mission’s scientific instruments;(2)the full mission profile,encompassing spacecraft design,operational capabilities,and ground segment infrastructure.展开更多
In this White Paper we present the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to Observatory Science targets. These include flaring stars, supernova remnants, accreting wh...In this White Paper we present the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to Observatory Science targets. These include flaring stars, supernova remnants, accreting white dwarfs, low and high mass X-ray binaries, radio quiet and radio loud active galactic nuclei, tidal disruption events, and gamma-ray bursts. eXTP will be excellently suited to study one common aspect of these objects: their often transient nature. Developed by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.展开更多
In this paper we describe the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to accretion flows in the strong field gravity regime around both stellar-mass and supermassive bl...In this paper we describe the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to accretion flows in the strong field gravity regime around both stellar-mass and supermassive black-holes. eXTP has the unique capability of using advanced "spectral-timing-polarimetry" techniques to analyze the rapid variations with three orthogonal diagnostics of the flow and its geometry, yielding unprecedented insight into the inner accreting regions, the effects of strong field gravity on the material within them and the powerful outflows which are driven by the accretion process.展开更多
基金supported by China’s Space Origins Exploration Programsupport from the Chinese Academy of Sciences (Grant No.E32983U810)+13 种基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB0550300)the National Natural Science Foundation of China (Grant No.12325301)supported by the National Natural Science Foundation of China (Grant Nos.12233002,and 12041306)the National SKA Program of China (Grant No.2020SKA0120300)the National Key R&D Program of China (Grant No.2021YFA0718500)the support from the Xinjiang Tianchi Programsupported by the National Natural Science Foundation of China (Grant No.12333007)the International Partnership Program of the Chinese Academy of Sciences (Grant No.113111KYSB20190020)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA15020100)supported by the Beijing Municipal Natural Science Foundation (Grant No.1242032)the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No.2022056)supported by the National Key Research and Development Program of China (Grant Nos.2022YFC2205201,and 2020YFC2201400)funding by the European Union-Next Generation EU RFF M4C2 1.1 PRIN 2022 project “2022RJLWHN URKA”INAF 2023 Theory Grant Ob Fu 1.05.23.06.06 “Understanding R-process & Kilonovae Aspects (URKA)”.
文摘In this new era of time-domain and multi-messenger astronomy,various new transients and new phenomena are constantly being discovered thanks to the rapid advances in observations,which provide the excellent opportunity to study the physics in the extreme environments.The enhanced X-ray Timing and Polarimetry mission(eXTP),planned to be launched in 2030,has several key advantages,including advanced polarimetry,high sensitivity&large effective area,and wide energy range coverage,which make it a groundbreaking project in high-energy astrophysics.In this article,we briefly introduce the potential time-domain and multi-messenger targets for eXTP,including gravitational-wave(GW)counterparts,gamma-ray bursts(GRBs),magnetars and fast radio bursts(FRBs),tidal disruption events(TDEs),supernovae,high energy neutrinos and TeV active galactic nucleus(AGNs),and so on.We discuss the advantages of future eXTP observations for detecting these sources,their detection capabilities,the abilities to distinguish theoretical models,and their applications in gravity and cosmology.
基金the support of the National Natural Science Foundation of China(Grant No.12333007)the International Partnership Program of Chinese Academy of Sciences(Grant No.113111KYSB20190020)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA15020100)support by ASI,under the dedicated eXTP agreements and agreement ASI-INAF n.2017-14-H.O.by INAF and INFN under project REDSOXsupport from the Deutsche Zentrum für Luft-und Raumfahrt,the German Aerospace Center(DLR)support from MINECO grant ESP2017-82674-R and FEDER funds.
文摘In this paper,we present the current status of the enhanced X-ray Timing and Polarimetry mission,which has been fully approved for launch in 2030.eXTP is a space science mission designed to study fundamental physics under extreme conditions of matter density,gravity,and magnetism.The mission aims at determining the equation of state of matter at supra-nuclear density,measuring the effects of quantum electro-dynamics,and understanding the dynamics of matter in strong-field gravity.In addition to investigating fundamental physics,the eXTP mission is poised to become a leading observatory for time-domain and multi-messenger astronomy in the 2030s,as well as providing observations of unprecedented quality on a variety of galactic and extragalactic objects.After briefly introducing the history and a summary of the scientific objectives of the eXTP mission,this paper presents a comprehensive overview of:(1)the cutting-edge technology,technical specifications,and anticipated performance of the mission’s scientific instruments;(2)the full mission profile,encompassing spacecraft design,operational capabilities,and ground segment infrastructure.
基金supported by the Royal Society,ERC Starting(Grant No.639217)he European Union Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Global Fellowship(Grant No.703916)+10 种基金the National Natural Science Foundation of China(Grant Nos.11233001,11773014,11633007,11403074,11333005,11503008,and 11590781)the National Basic Research Program of China(Grant No.2015CB857100)NASA(Grant No.NNX13AD28A)an ARC Future Fellowship(Grant No.FT120100363)the National Science Foundation(Grant No.PHY-1430152)the Spanish MINECO(Grant No.AYA2016-76012-C3-1-P)the ICCUB(Unidad de Excelencia’Maria de Maeztu’)(Grant No.MDM-2014-0369)EU’s Horizon Programme through a Marie Sklodowska-Curie Fellowship(Grant No.702638)the Polish National Science Center(Grant Nos.2015/17/B/ST9/03422,2015/18/M/ST9/00541,2013/10/M/ST9/00729,and 2015/18/A/ST9/00746)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA15020100)the NWO Veni Fellowship(Grant No.639.041.647)
文摘In this White Paper we present the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to Observatory Science targets. These include flaring stars, supernova remnants, accreting white dwarfs, low and high mass X-ray binaries, radio quiet and radio loud active galactic nuclei, tidal disruption events, and gamma-ray bursts. eXTP will be excellently suited to study one common aspect of these objects: their often transient nature. Developed by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.
基金financial contribution from the agreement ASI-INAF n.2017-14-H.Osupport of the Chinese Academy of Sciences through the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA15020100)the Polish National Science Centre(Grant No.2013/10/M/ST9/00729)
文摘In this paper we describe the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to accretion flows in the strong field gravity regime around both stellar-mass and supermassive black-holes. eXTP has the unique capability of using advanced "spectral-timing-polarimetry" techniques to analyze the rapid variations with three orthogonal diagnostics of the flow and its geometry, yielding unprecedented insight into the inner accreting regions, the effects of strong field gravity on the material within them and the powerful outflows which are driven by the accretion process.