This paper assesses the hydroesterification process for the production of Biodiesel from Monoraphidium contortum (MORF-1) microalgae biomass, as it is a sustainable alternative not only economically, but also environm...This paper assesses the hydroesterification process for the production of Biodiesel from Monoraphidium contortum (MORF-1) microalgae biomass, as it is a sustainable alternative not only economically, but also environmentally and ecologically to replace petroleum diesel fuel. The Biodiesel studied in this work was obtained from fatty acid esterification, a product of microalgae and methanol biomass hydrolysis reaction. CBMM’s (HY-340) niobium oxide powder was used as catalyst. The reactions were carried out in a properly closed autoclave reactor (batch), where the reagents were mixed under constant stirring at 500 rpm for hydrolysis and esterification. The products generated were submitted to gas chromatography and oxidative stability analysis. The hydroesterification process showed itself to be a promising alternative to the conventional biodiesel production process (transesterification) as it favors the use of feedstocks with any acidity and moisture content and may be performed with acid catalyst, which favors high conversions in a small range of time (30 minutes).展开更多
Hydroesterification process has been presented biodiesel production from oil the green microalga Nannochloropsis oculata raw materials. Biodiesel studied in this work is the main product got from the hydroesterificati...Hydroesterification process has been presented biodiesel production from oil the green microalga Nannochloropsis oculata raw materials. Biodiesel studied in this work is the main product got from the hydroesterification of biomass the Nannochloropsis oculata and was obtained from esterification of fatty acid (product of a hydrolysis reaction) with methanol. It was used as catalyst the niobic acid pure and supported on δ-aluminum. The product was evaluated by gas chromatography and other analyses. The optimum conditions found in the conversion (%) for the hydrolysis reactions of the biomass (92.3%). Better results were observed in the algae concentration 20%, lead at 300?C with 20% of catalyst. For esterification of fatty acids of Nannochloropsis oculata (92.24%), were observed the molar ratio methanol: fat acid 3, lead at 200°C with 20% of catalyst supported.展开更多
文摘This paper assesses the hydroesterification process for the production of Biodiesel from Monoraphidium contortum (MORF-1) microalgae biomass, as it is a sustainable alternative not only economically, but also environmentally and ecologically to replace petroleum diesel fuel. The Biodiesel studied in this work was obtained from fatty acid esterification, a product of microalgae and methanol biomass hydrolysis reaction. CBMM’s (HY-340) niobium oxide powder was used as catalyst. The reactions were carried out in a properly closed autoclave reactor (batch), where the reagents were mixed under constant stirring at 500 rpm for hydrolysis and esterification. The products generated were submitted to gas chromatography and oxidative stability analysis. The hydroesterification process showed itself to be a promising alternative to the conventional biodiesel production process (transesterification) as it favors the use of feedstocks with any acidity and moisture content and may be performed with acid catalyst, which favors high conversions in a small range of time (30 minutes).
文摘Hydroesterification process has been presented biodiesel production from oil the green microalga Nannochloropsis oculata raw materials. Biodiesel studied in this work is the main product got from the hydroesterification of biomass the Nannochloropsis oculata and was obtained from esterification of fatty acid (product of a hydrolysis reaction) with methanol. It was used as catalyst the niobic acid pure and supported on δ-aluminum. The product was evaluated by gas chromatography and other analyses. The optimum conditions found in the conversion (%) for the hydrolysis reactions of the biomass (92.3%). Better results were observed in the algae concentration 20%, lead at 300?C with 20% of catalyst. For esterification of fatty acids of Nannochloropsis oculata (92.24%), were observed the molar ratio methanol: fat acid 3, lead at 200°C with 20% of catalyst supported.