Small non-coding RNAs are potential diagnostic biomarkers for lung cancer. Mitochondria-derived small RNA (mtRNA) is a novel regulatory small non-coding RNA that only recently has been identified and cataloged. Curren...Small non-coding RNAs are potential diagnostic biomarkers for lung cancer. Mitochondria-derived small RNA (mtRNA) is a novel regulatory small non-coding RNA that only recently has been identified and cataloged. Currently, there are no reports of studies of mtRNA in human lung cancer. Currently, normalization methods are unstable, and they often fail to identify differentially expressed small non-coding RNAs (sncRNAs). In order to identify reliable biomarkers for lung cancer screening, we used a ratio-based method using mtRNAs newly discovered in human peripheral blood mononuclear cells. In the discovery cohort (AUC = 0.981) and independent validation cohort (AUC = 0.916) the prediction model of eight mtRNA ratios distinguished lung cancer patients from controls. The prediction model will provide reliable biomarkers that will allow blood-based screening to become more feasible and will help make lung cancer diagnosis more accurate in clinical practice.展开更多
基金supported by the National Institutes of Health(NIH)grants 1R01CA223490,5P30GM114737,5P20GM103466,5U54MD007601,5P30CA071789,1R01CA230514,U54CA143727 and P20GM139753.
文摘Small non-coding RNAs are potential diagnostic biomarkers for lung cancer. Mitochondria-derived small RNA (mtRNA) is a novel regulatory small non-coding RNA that only recently has been identified and cataloged. Currently, there are no reports of studies of mtRNA in human lung cancer. Currently, normalization methods are unstable, and they often fail to identify differentially expressed small non-coding RNAs (sncRNAs). In order to identify reliable biomarkers for lung cancer screening, we used a ratio-based method using mtRNAs newly discovered in human peripheral blood mononuclear cells. In the discovery cohort (AUC = 0.981) and independent validation cohort (AUC = 0.916) the prediction model of eight mtRNA ratios distinguished lung cancer patients from controls. The prediction model will provide reliable biomarkers that will allow blood-based screening to become more feasible and will help make lung cancer diagnosis more accurate in clinical practice.