The origin and history of the Earth are manifested as the evolutionary processes of chemistry and physics of its interiors,which can be recognized by deciphering the geochemical signals recorded in minerals and rocks....The origin and history of the Earth are manifested as the evolutionary processes of chemistry and physics of its interiors,which can be recognized by deciphering the geochemical signals recorded in minerals and rocks.Deep interiors of the Earth and other rocky planets are under both extreme pressure and temperature,i.e.,approximately 360 gigapascals(GPa)and as high as 7000 K at the center of the Earth.展开更多
Talc is a layered hydrous silicate mineral that plays a vital role in transporting water into Earth’s interior and is crucial for explaining geophysical observations in subduction zone settings.In this study,we explo...Talc is a layered hydrous silicate mineral that plays a vital role in transporting water into Earth’s interior and is crucial for explaining geophysical observations in subduction zone settings.In this study,we explored the structure,equation of state,and elasticity of both triclinic and monoclinic talc under high pressures up to 18 GPa using first principles simulations based on density functional theory corrected for dispersive forces.Our results indicate that principal components of the full elastic constant tensor C_(11) and C_(22),shear components C_(66),and several off-diagonal components show anomalous pressure dependence.This non-monotonic pressure dependence of elastic constant components is likely related to the structural changes and is often manifested in a polytypic transition from a low-pressure polytype talc-I to a high-pressure polytype talc-Ⅱ.The polytypic transition of talc occurs at pressures within its thermodynamic stability.However,the bulk and shear elastic moduli show no anomalous softening.Our study also shows that talc has low velocity,extremely high anisotropy,and anomalously high V_(P)/V_(S) ratio,thus making it a potential candidate mineral phase that could readily explain unusually high V_(P)/V_(S) ratio and large shear wave splitting delays as observed from seismological studies in many subduction systems.展开更多
文摘The origin and history of the Earth are manifested as the evolutionary processes of chemistry and physics of its interiors,which can be recognized by deciphering the geochemical signals recorded in minerals and rocks.Deep interiors of the Earth and other rocky planets are under both extreme pressure and temperature,i.e.,approximately 360 gigapascals(GPa)and as high as 7000 K at the center of the Earth.
基金supported by the US National Science Foundation grant EAR 1763215 and EAR 1753125XSEDE facilities(GEO170003)+4 种基金the High-Performance Computing,Research Computing Center,Florida State Universitythe UK’s National Supercomputer Service through the UK CarParrinello Consortium(EPSRC Grant No.EP/P022561/1)and project ID d56"Planetary Interiors"funding from the INSU-CNRSthe French Government Laboratory of Excellence initiative n°ANR-10-LABX-0006,the Région Auvergnethe European Regional Development Fund(Cler Volc contribution number 530).
文摘Talc is a layered hydrous silicate mineral that plays a vital role in transporting water into Earth’s interior and is crucial for explaining geophysical observations in subduction zone settings.In this study,we explored the structure,equation of state,and elasticity of both triclinic and monoclinic talc under high pressures up to 18 GPa using first principles simulations based on density functional theory corrected for dispersive forces.Our results indicate that principal components of the full elastic constant tensor C_(11) and C_(22),shear components C_(66),and several off-diagonal components show anomalous pressure dependence.This non-monotonic pressure dependence of elastic constant components is likely related to the structural changes and is often manifested in a polytypic transition from a low-pressure polytype talc-I to a high-pressure polytype talc-Ⅱ.The polytypic transition of talc occurs at pressures within its thermodynamic stability.However,the bulk and shear elastic moduli show no anomalous softening.Our study also shows that talc has low velocity,extremely high anisotropy,and anomalously high V_(P)/V_(S) ratio,thus making it a potential candidate mineral phase that could readily explain unusually high V_(P)/V_(S) ratio and large shear wave splitting delays as observed from seismological studies in many subduction systems.