Silicon photonics(SiPh)technology has become a key platform for developing photonic integrated circuits due to its CMOS compatibility and scalable manufacturing.However,integrating efficient on-chip optical sources an...Silicon photonics(SiPh)technology has become a key platform for developing photonic integrated circuits due to its CMOS compatibility and scalable manufacturing.However,integrating efficient on-chip optical sources and in-line amplifiers remains challenging due to silicon’s indirect bandgap.In this study,we developed prefabricated standardized InAs/GaAs quantum-dot(QD)active devices optimized for micro-transfer printing and successfully integrated them on SiPh integrated circuits.By transfer-printing standardized QD devices onto specific regions of the SiPh chip,we realized O-band semiconductor optical amplifiers(SOAs),distributed feedback(DFB)lasers,and widely tunable lasers(TLs).The SOAs reached an on-chip gain of 7.5 dB at 1299 nm and maintained stable performance across a wide input power range.The integrated DFB lasers achieved waveguide(WG)-coupled output powers of up to 19.7 mW,with a side-mode suppression ratio(SMSR)of 33.3 dB,and demonstrated notable robustness against optical feedback,supporting error-free data rates of 30 Gbps without additional isolators.Meanwhile,the TLs demonstrated a wavelength tuning range exceeding 35 nm,and a WG-coupled output power greater than 3 m W.The micro-transfer printing approach effectively decouples the fabrication of non-native devices from the SiPh process,allowing back-end integration of the Ⅲ–Ⅴ devices.Our approach offers a viable path toward fully integrated Ⅲ–Ⅴ/ SiPh platforms capable of supporting high-speed,high-capacity communication.展开更多
The polymer waveguide optical biosensor based on the Mach-Zehnder interferometer (MZI) by using spectral splitting effect is investigated. The MZI based biosensor has two unequal width sensing arms. With the differe...The polymer waveguide optical biosensor based on the Mach-Zehnder interferometer (MZI) by using spectral splitting effect is investigated. The MZI based biosensor has two unequal width sensing arms. With the different mode dispersion responses of the two-arm waveguides to the cladding refractive index change, the spectral splitting effect of the output interference spectrum is obtained, inducing a very high sensitivity. The influence of the different mode dispersions between the two-arm waveguides on the spectral splitting characteristic is analyzed. By choosing different lengths of the two unequal width sensing arms, the initial dip wavelength of the interference spectrum and the spectral splitting range can be controlled flexibly. The polymer waveguide optical biosensor is designed, and its sensing property is analyzed. The results show that the sensitivity of the polymer waveguide optical biosensor by using spectral splitting effect is as high as 10^4nm/RIU, with an improvement of 2-3 orders of magnitude compared with the slot waveguide based microring biosensor.展开更多
A 2 × 2 optical waveguide coupler at 850 nm based on the multimode interference (MMI) structure with the polysilsesquioxanes liquid series (PSQ-Ls) polymer material and the imprint technique is presented. The...A 2 × 2 optical waveguide coupler at 850 nm based on the multimode interference (MMI) structure with the polysilsesquioxanes liquid series (PSQ-Ls) polymer material and the imprint technique is presented. The influence of the structural parameters, such as the single mode condition, the waveguide spacing of input/output ports, and the width and length of the multimode waveguide, on the optical splitting performance including the excess loss and the uniformity is simulated by the beam propagation method. By inserting a taper section of isosceles trapezoid between the single mode and multimode waveguides, the optimized structural parameters for low excess loss and high uniformity are obtained with the excess loss of -0.040 dB and the uniformity of-0.007 dB. The effect of the structure deviations induced during the imprint process on the optical splitting performance at different residual layer thicknesses is also investigated. The analysis results provide useful instructions for the waveguide device fabrication.展开更多
基金European Union(CALADAN)(825453)Dutch Growth Fund PhotonDelta project。
文摘Silicon photonics(SiPh)technology has become a key platform for developing photonic integrated circuits due to its CMOS compatibility and scalable manufacturing.However,integrating efficient on-chip optical sources and in-line amplifiers remains challenging due to silicon’s indirect bandgap.In this study,we developed prefabricated standardized InAs/GaAs quantum-dot(QD)active devices optimized for micro-transfer printing and successfully integrated them on SiPh integrated circuits.By transfer-printing standardized QD devices onto specific regions of the SiPh chip,we realized O-band semiconductor optical amplifiers(SOAs),distributed feedback(DFB)lasers,and widely tunable lasers(TLs).The SOAs reached an on-chip gain of 7.5 dB at 1299 nm and maintained stable performance across a wide input power range.The integrated DFB lasers achieved waveguide(WG)-coupled output powers of up to 19.7 mW,with a side-mode suppression ratio(SMSR)of 33.3 dB,and demonstrated notable robustness against optical feedback,supporting error-free data rates of 30 Gbps without additional isolators.Meanwhile,the TLs demonstrated a wavelength tuning range exceeding 35 nm,and a WG-coupled output power greater than 3 m W.The micro-transfer printing approach effectively decouples the fabrication of non-native devices from the SiPh process,allowing back-end integration of the Ⅲ–Ⅴ devices.Our approach offers a viable path toward fully integrated Ⅲ–Ⅴ/ SiPh platforms capable of supporting high-speed,high-capacity communication.
基金This work was supported in part by the International Science & Technology Cooperation Program of China (No. 2014DFG32590), National Natural Science Foundation of China (No. 61307040), National R&D Program (No. 2012AA040406), National Research Foundation of China (No. 6140450010305), Natural Science Foundation of Liaoning Province (No. 2014020002), and Fundamental Research Funds for the Central Universities (DUT 15ZD231 and DUT2015TD47).
文摘The polymer waveguide optical biosensor based on the Mach-Zehnder interferometer (MZI) by using spectral splitting effect is investigated. The MZI based biosensor has two unequal width sensing arms. With the different mode dispersion responses of the two-arm waveguides to the cladding refractive index change, the spectral splitting effect of the output interference spectrum is obtained, inducing a very high sensitivity. The influence of the different mode dispersions between the two-arm waveguides on the spectral splitting characteristic is analyzed. By choosing different lengths of the two unequal width sensing arms, the initial dip wavelength of the interference spectrum and the spectral splitting range can be controlled flexibly. The polymer waveguide optical biosensor is designed, and its sensing property is analyzed. The results show that the sensitivity of the polymer waveguide optical biosensor by using spectral splitting effect is as high as 10^4nm/RIU, with an improvement of 2-3 orders of magnitude compared with the slot waveguide based microring biosensor.
基金This work was supported in part by the International Science & Technology Cooperation Program of China (No. 2014DFG32590), National Natural Science Foundation of China (No.61077015, 61307040), National R&D Program (No.2012AA040406), Natural Science Foundation of Liaoning Province (No. 2014020002), Opening Project of Shanghai Key Laboratory of All Solid-state Laser and Applied Techniques (No. 2013ADL04), and Fundamental Research Funds for the Central Universities (DUT 13JB01, DUT 15ZD231, and DUT2015TD47).
文摘A 2 × 2 optical waveguide coupler at 850 nm based on the multimode interference (MMI) structure with the polysilsesquioxanes liquid series (PSQ-Ls) polymer material and the imprint technique is presented. The influence of the structural parameters, such as the single mode condition, the waveguide spacing of input/output ports, and the width and length of the multimode waveguide, on the optical splitting performance including the excess loss and the uniformity is simulated by the beam propagation method. By inserting a taper section of isosceles trapezoid between the single mode and multimode waveguides, the optimized structural parameters for low excess loss and high uniformity are obtained with the excess loss of -0.040 dB and the uniformity of-0.007 dB. The effect of the structure deviations induced during the imprint process on the optical splitting performance at different residual layer thicknesses is also investigated. The analysis results provide useful instructions for the waveguide device fabrication.