The development of solid frustrated Lewis pairs(FLPs)catalysts with porous structures is a promising strategy for advancing green hydrogenation technologies and has garnered significant attention.Leveraging the divers...The development of solid frustrated Lewis pairs(FLPs)catalysts with porous structures is a promising strategy for advancing green hydrogenation technologies and has garnered significant attention.Leveraging the diverse oxidation states and structural tunability of cerium-based metal-organic frameworks(Ce-MOFs),this study employed a competitive coordination strategy utilizing a single carboxylate functional group ligand to construct a series of MOF-808-X(X=-NH_(2),-OH,-Br,and-NO_(2))featuring rich solid-state FLPs for hydrogenation of unsaturated olefins.The-X functional group serves as a microenvironment,enhancing hydrogenation activity by modulating the electronic properties and acid-base characteristics of the FLP sites.The unique redox properties of elemental cerium facilitate the exposure of unsaturated Ce sites(Ce-CUS,Lewis acid(LA))and adjacent Ce-OH(Lewis base(LB))sites within the MOFs,generating abundant solid-state FLP(Ce-CUS/Ce-OH)sites.Experimental results demonstrate that Ce-CUS and Ce-OH interact with theσandσ^(*)orbitals of H-H,and this"push-pull"synergy promotes heterolytic cleavage of the H-H bond.The lone pair electrons of the electron-donating functional group are transmitted through the molecular backbone to the LB site,thereby increasing its strength and reducing the activation energy required for H_(2)heterolytic cleavage.Notably,at 100℃and 2 MPa H_(2),MOF-808-NH_(2)achieves complete conversion of styrene and dicyclopentadiene,significantly outperforming MOF-808.Based on in-situ analysis and density functional theory calculations,a plausible reaction mechanism is proposed.This research enriches the theoretical framework for unsaturated olefin hydrogenation catalysts and contributes to the development of efficient catalytic systems.展开更多
Rapid advances in thermal management technology and the increasing need for multi-energy conversion have placed stringent energy efficiency requirements on next-generation shape-stable composite phase change materials...Rapid advances in thermal management technology and the increasing need for multi-energy conversion have placed stringent energy efficiency requirements on next-generation shape-stable composite phase change materials(PCMs).Magnetically-responsive phase change thermal storage materials are considered an emerging concept for energy storage systems,enabling PCMs to perform unprecedented functions(such as green energy utilization,magnetic thermotherapy,drug release,etc.).The combination of multifunctional magnetic nanomaterials and PCMs is a milestone in the creation of advanced multifunctional composite PCMs.However,a timely and comprehensive review of composite PCMs based on magnetic nanoparticle modification is still missing.Herein,we furnish an exhaustive exposition elucidating the cutting-edge advancements in magnetically responsive composite PCMs.We delve deeply into the multifarious roles assumed by distinct nanoparticles within composite PCMs of varying dimensions,meticulously scrutinizing the intricate interplay between their architectures and thermophysical attributes.Moreover,we prognosticate future research trajectories,delineate alternative stratagems,and illuminate prospective avenues.This review is intended to stimulate broader academic interest in interdisciplinary fields and provide valuable insights into the development of next-generation magnetically-responsive composite PCMs.展开更多
Defect engineering improves the catalytic performance of metal-organic frameworks(MOFs)loaded metal nanoparticles(MNPs@MOFs),but there is still a challenge in defining the structure-activity relationships.Herein,the c...Defect engineering improves the catalytic performance of metal-organic frameworks(MOFs)loaded metal nanoparticles(MNPs@MOFs),but there is still a challenge in defining the structure-activity relationships.Herein,the content of linker-missing defects in UiO-66(Ce)was systematically regulated via formic acid as the modulators,and defective UiO-66(Ce)loaded Ni nanoparticles(NPs)were constructed for dicyclopentadiene(DCPD)hydrogenation.The fine regulation of defect engineering and reduction conditions affected the structure properties of UiO-66(Ce)and the electronic metal-support interaction between MOFs and Ni NPs,thereby optimizing the microenvironment and electronic state of Ni NPs.The optimized U(Ce)-40eq with suitable defects,small size and structure stability effectively promoted the production of highly dispersed abundant electron-deficient Ni^(0) active sites,enhancing the adsorption and activation of H_(2) and C=C bonds,especially accelerating the rate-determining step.Therefore,U(Ce)-40eq loaded 5 wt%Ni NPs achieved DCPD saturated hydrogenation to tetrahydrodicyclopentadiene(70℃,2 MPa,90 min),superior to most high-loading Ni-based catalysts.This work reveals the synergistic mechanism of MOFs defect engineering and electronic structure of Ni NPs,providing effective guidance for the precise preparation of highly efficient and stable MNPs@MOFs heterogeneous catalysts.展开更多
The construction of frustrated Lewis acid-base pairs(FLPs)in porous systems is very important for the field of industrial hydrogenation catalysis,but there is still a great challenge.Based on the Ce^(3+)/Ce^(4+)redox ...The construction of frustrated Lewis acid-base pairs(FLPs)in porous systems is very important for the field of industrial hydrogenation catalysis,but there is still a great challenge.Based on the Ce^(3+)/Ce^(4+)redox pairs and abundant defects in porous Ce-based metal-organic frameworks(Ce-MOFs),FLP sites consisting of ligand-defective Ce sites(Lewis acid,LA)and neighboring terminal O sites(Lewis base,LB)were constructed in situ by a simple vacuum thermal activation method in lamellar Ce-UiO-66-F.Defects/oxygen vacancies in the Ce-MOFs structure result in the difference in the electron cloud density between Ce and O,which is suitable for H-H hetero-cleavage and H-transfer in the dicyclopentadiene(DCPD)hydrogenation process.Particularly,Ce-UiO-66-F-200 achieved 96.9%conversion of DCPD and 97.8%selectivity of 8,9-dihydrodicyclopentadiene(8,9-DHDCPD)at 100℃ under 2MPa H2 for 10 h,which is 9.4 times higher than 10.2%conversion of DCPD over the unactivated Ce-UiO-66-F.This research promotes the understanding of solid MOFs-based porous FLPs for H_(2) activation,and encourages the in-depth investigation of surface solid FLPs to the whole material FLPs.展开更多
The incidence and mortality of hepatocellular carcinoma(HCC) have fallen dramatically in China and elsewhere over the past several decades. Nonetheless, HCC remains a major public health issue as one of the most commo...The incidence and mortality of hepatocellular carcinoma(HCC) have fallen dramatically in China and elsewhere over the past several decades. Nonetheless, HCC remains a major public health issue as one of the most common malignant tumors worldwide and one of the leading causes of death caused by cancer in China. Hepatocarcinogenesis is a very complex biological process associated with many environmental risk factors and factors in heredity, including abnormal activation of cellular and molecular signaling pathways such as Wnt/β-catenin, hedgehog, MAPK, AKT, and ERK signaling pathways, and the balance between the activation and inactivation of the proto-oncogenes and anti-oncogenes, and the differentiation of liver cancer stem cells. Molecule-targeted therapy, a new approach for the treatment of liver cancer, blocks the growth of cancer cells by interfering with the molecules required for carcinogenesis and tumor growth, making it both specific and selective. However, there is no one drug completely designed for liver cancer, and further development in the research of liver cancer targeted drugs is now almost stagnant. The purpose of this review is to discuss recent advances in our understanding of the molecular mechanisms underlying the development of HCC and in the development of novel strategies for cancer therapeutics.展开更多
The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities.In this study,we investigate the feasibility of using ChatGPT in experiments on tran...The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities.In this study,we investigate the feasibility of using ChatGPT in experiments on translating radiology reports into plain language for patients and healthcare providers so that they are educated for improved healthcare.Radiology reports from 62 low-dose chest computed tomography lung cancer screening scans and 76 brain magnetic resonance imaging metastases screening scans were collected in the first half of February for this study.According to the evaluation by radiologists,ChatGPT can successfully translate radiology reports into plain language with an average score of 4.27 in the five-point system with 0.08 places of information missing and 0.07 places of misinformation.In terms of the suggestions provided by ChatGPT,they are generally relevant such as keeping following-up with doctors and closely monitoring any symptoms,and for about 37%of 138 cases in total ChatGPT offers specific suggestions based on findings in the report.ChatGPT also presents some randomness in its responses with occasionally over-simplified or neglected information,which can be mitigated using a more detailed prompt.Furthermore,ChatGPT results are compared with a newly released large model GPT-4,showing that GPT-4 can significantly improve the quality of translated reports.Our results show that it is feasible to utilize large language models in clinical education,and further efforts are needed to address limitations and maximize their potential.展开更多
Developing advanced nanocomposite integrating solar-driven thermal energy storage and thermal management functional microwave absorption can facilitate the cutting-edge application of phase change materials(PCMs).To c...Developing advanced nanocomposite integrating solar-driven thermal energy storage and thermal management functional microwave absorption can facilitate the cutting-edge application of phase change materials(PCMs).To conquer this goal,herein,two-dimensional MoS_(2) nanosheets are grown in situ on the surface of one-dimensional CNTs to prepare core-sheath MoS_(2)@CNTs for the encapsulation of paraffin wax(PW).Benefiting from the synergistic enhancement photothermal effect of MoS_(2) and CNTs,MoS_(2)@CNTs is capable of efficiently trapping photons and quickly transporting phonons,thus yielding a high solar-thermal energy conversion and storage efficiency of 94.97%.Meanwhile,PW/MoS_(2)@CNTs composite PCMs exhibit a high phase change enthalpy of 101.60 J/g and excellent lo ng-term thermal storage durability after undergoing multiple heating-cooling cycles.More attractively,PW/MoS_(2)@CNTs composite PCMs realize thermal management functional microwave absorption in heat-related electronic application scenarios,which is superior to the single microwave absorption of traditional materials.The minimum reflection loss(RL) for PW/MoS_(2)@CNTs is-28 dB at 12.91 GHz with a 2.0 mm thickness.This functional integration design provides some insightful references on developing advanced microwave absorbing composite PCMs,holding great potential towards high-efficiency solar energy utilization and thermally managed microwave absorption fields.展开更多
Objective:The role of urgent endoscopy in nonvariceal upper gastrointestinal hemorrhage(NVUGIH)remains controversial.We designed a retrospective study to compare the outcomes between urgent endoscopy(within 12 h)and n...Objective:The role of urgent endoscopy in nonvariceal upper gastrointestinal hemorrhage(NVUGIH)remains controversial.We designed a retrospective study to compare the outcomes between urgent endoscopy(within 12 h)and non-urgent endoscopy for patients with NVUGIH.Methods:A total of 540 hospitalized patients with NVUGIH were included in our study.Patients who received endoscopy within 12 h or after 12 h were divided into two groups,the urgent and non-urgent endoscopy groups,respectively.The clinical outcomes including rebleeding,mortality,endoscopic re-intervention,need for emergency surgery and interventional radiotherapy were compared between the groups.Patients with Glasgow-Blatchford scores(GBS)<12 and>12 were defined as the lower-and high-risk groups,respectively,and the predictors of rebleeding and mortality in both groups were analyzed individually.Results:Patients with NVUGIH in the urgent endoscopy group had a higher rate of rebleeding(27.6%vs.16.9%,P=0.003)and blood transfusion(73.2%vs.55.5%,P<0.001)than those in the non-urgent endoscopy group,while the mortality and the length of hospitalization were not significantly different between the groups(P>0.05).For lower-risk patients,urgent endoscopy was independently associated with a higher likelihood of rebleeding(adjusted OR:1.73,95%CI:1.03-2.88),while it was not associated with in-hospital mortality.However,the urgent need for endoscopy was not associated with rebleeding and in-hospital mortality in high-risk patients.Conclusion:Endoscopy within 12 h did not provide any advantage in the outcomes of patients with NVUGIH,and may even lead to an increased rebleeding rate in lower-risk patients.展开更多
In early life, the immune system plays an essential role in brain development. In our study, the immunopotentiator thymosin alpha-1(Ta1) was peripherally administered to neonatal mice to explore whether the peripher...In early life, the immune system plays an essential role in brain development. In our study, the immunopotentiator thymosin alpha-1(Ta1) was peripherally administered to neonatal mice to explore whether the peripheral immunopotentiator affects neurodevelopment and cognition, and to further investigate the relevant mechanism. Compared with the control group, the Ta1 mice displayed better cognitive abilities in early life. The numbers of 5-bromodeoxyuridine(Brd U)+, nestin+,T-box transcription factor 2(Tbr2)+, Brd U+/doublecortin(DCX)+, Brd U+/ionized calcium-binding adaptor molecule 1(Iba1)+, and Brd U+/neuronal nuclei(Neu N)+ cells in the hippocampus were increased in the Ta1 group,accompanied by increased interleukin-4(IL-4), interferon-gamma, brain-derived neurotrophic factor, nerve growth factor, and insulin-like growth factor-1 as well as decreased IL-6 and tumor necrosis factor-a. Furthermore, the Ta1-group showed a Th1-polarized immune response, and the neurotrophic factors were positively associated with the Th1/Th2 ratio. More importantly, administration of Ta1 blocked lipopolysaccharide-induced impairment of hippocampal neurogenesis in early life. These findings suggest that peripheral Ta1 contributes to neurogenesis and cognition probably through a systemic Th1 bias, as well as neuroprotection against LPS infection by Ta1.展开更多
Extensive use of thermal energy in daily life is ideal for reducing carbon emissions to achieve carbon neutrality;however,the effective collection of thermal energy is a major hurdle.Thermoelectric(TE)conversion techn...Extensive use of thermal energy in daily life is ideal for reducing carbon emissions to achieve carbon neutrality;however,the effective collection of thermal energy is a major hurdle.Thermoelectric(TE)conversion technology based on the Seebeck effect and thermal energy storage technology based on phase change materials(PCMs)represent smart,feasible,and research-worthy approaches to overcome this hurdle.However,the integration of multiple thermal energy sources freely existing in the environment for storage and output of thermal and electrical energy simultaneously still remains a huge challenge.Herein,three-dimensional(3D)nanostructured metal-organic frameworks(MOFs)are in situ nucleated and grown onto carbon nanotubes(CNTs)via coordination bonding.After calcination,the prepared core-shell structural CNTs@MOFs are transformed into tightened 1D/3D carbon heterostructure loading Co nanoparticles for efficient solar-thermoelectric energy harvesting.Surprisingly,the corresponding composite PCMs show a record-breaking solar-thermal conversion efficiency of 98.1%due to the tightened carbon heterostructure and the local surface plasmon resonance effect of Co nanoparticles.Moreover,our designed all-in-one composite PCMs are also capable of creating an electrical potential of 0.5 mV based on the Seebeck effect without a TE generator.This promising approach can store thermal and electrical energy simultaneously,providing a new direction in the design of advanced all-in-one multifunctional PCMs for thermal energy storage and utilization.展开更多
Electrochemical reduction of water to hydrogen holds great promise for clean energy,while its widespread application relies on the development of efficient catalysts with large surface area,abundant exposed active sit...Electrochemical reduction of water to hydrogen holds great promise for clean energy,while its widespread application relies on the development of efficient catalysts with large surface area,abundant exposed active sites and superior electron conductivity.Herein,we report a facile strategy to configure an electrocatalyst composed of cobalt phosphide and rhodium uniformly anchored on reduced graphene oxide for hydrogen generation.The hybrids effectively integrate the exposed active sites,electron conductivity and synergistic effect of the catalyst.Electrochemical tests exhibit that the catalyst shows superior hydrogen evolution reaction catalytic activity and stability,with a small Tafel slope of 43 m V dec-1.Overpotentials as low as 29 and 72 mV are required to achieve current densities of 2 and 10 mA cm-2in 0.5M H2SO4,respectively.The hybrid constitution with highly active sites on conductive substrate is a new strategy to synthesize extremely efficient electrocatalysts.Especially,the efficient synergistic effect among cobalt phosphide,rhodium and reduced graphene oxide provides a novel approach for configuring electrocatalysts with high electron efficiency.展开更多
Recently,there has been renewed interest in interface engineering as a means to further push the performance of perovskite solar cells closer to the Schockly-Queisser limit.Herein,for the first time we employ a multi-...Recently,there has been renewed interest in interface engineering as a means to further push the performance of perovskite solar cells closer to the Schockly-Queisser limit.Herein,for the first time we employ a multi-functional 4-chlorobenzoic acid to produce a self-assembled monolayer on a perovskite surface.With this interlayer we observe passivation of perovskite surface defects and a significant suppression of non-radiative charge recombination.Furthermore,at the surface of the interlayer we observe,charge dipoles which tune the energy level alignment,enabling a larger energetic driving force for hole extraction.The perovskite surface becomes more hydrophilic due to the presence of the interlayer.Consequently,we observe an improvement in open-circuit voltage from 1.08 to 1.16 V,a power conversion efficiency improvement from 18%to 21%and an improved stability under ambient conditions.Our work highlights the potential of SAMs to engineer the photo-electronic properties and stability of perovskite interfaces to achieve high-performance light harvesting devices.展开更多
The liquid leakage and weak solar absorption capacity of organic phase change materials(PCMs)seriously hinder the efficient utilization of solar energy and thermal energy storage.To address these issues,we prepared na...The liquid leakage and weak solar absorption capacity of organic phase change materials(PCMs)seriously hinder the efficient utilization of solar energy and thermal energy storage.To address these issues,we prepared nanoporous metal organic framework(Ni-MOF)for the vacuum infiltration of paraffin wax(PW),followed by the coating of solar-absorbing functional polydopamine(PDA)on the surface of PW@MOF for photothermal conversion and storage.As an efficient photon harvester,PDA coating endows PW@MOF/PDA composite PCMs with excellent photothermal conversion and storage properties due to the robust broadband solar absorption capability in the UV–vis region.Resultantly,our prepared PW@MOF/PDA composite PCMs exhibit a high photothermal conversion and storage efficiency of 91.2%,while that of PW@MOF composite PCMs is only zero.In addition,PW@MOF/PDA composite PCMs also exhibit excellent thermal stability,shape stability,energy storage stability,and photothermal conversion stability.More importantly,this coating strategy is universal by integrating different MOFs and solar absorbers,showing the potential to accelerate the major breakthroughs of high-efficiency MOF-based photothermal composite PCMs in solar energy utilization.展开更多
Objective This study investigated the predictive value of tumor volume reduction rates(TVRRs) before and after induction chemotherapy in determining the radiosensitivity and prognosis of patients with locally advanced...Objective This study investigated the predictive value of tumor volume reduction rates(TVRRs) before and after induction chemotherapy in determining the radiosensitivity and prognosis of patients with locally advanced nasopharyngeal carcinomas(NPCs). Methods The clinical data of 172 patients with locally advanced primary NPCs who were treated from January 2009 to December 2012 were collected. Tumor regression was evaluated based on the results of the computed tomography scan or magnetic resonance imaging studies. Data about the tumor diameters before and after induction chemotherapy and after radiotherapy as well as the survival times of the patients were obtained. Results All 172 patients had NPCs. After radiotherapy, the TVRR in patients without residual tumor cells was higher than that in patients with residual tumor cells after induction chemotherapy(median values: 47.7% and 15.1%, respectively), and the 5-year survival rates were 80.3% and 45.6%, respectively. Neck lymph node metastasis was observed in 161 of 172 patients, and the TVRRs were similar(median values: 46.8% in 161 patients without residual tumor cells and 11.1% in 161 patients with residual tumor cells). The 5-year survival rate of the 161 patients without residual tumor cells was 84.5%, and that of patients with residual tumor cells was 37.3%. As shown by the receiver operating characteristic(ROC) curve, the area under the curve(AUC) of the ROC curve for TVRRs in patients with primary NPCs but without residual tumors was 0.851, whereas that for TVRRs in patients with neck lymph node metastasis but without residual tumors was 0.784. This result indicates that TVRR has a high diagnostic performance. The univariate Cox regression analysis showed that clinical stage, TVRR in primary NPCs, neck lymph node metastatic lesions before and after induction chemotherapy, presence or absence of residual tumor cells in primary NPCs, and neck lymph node metastatic lesions after radiotherapy were significantly correlated to overall survival(OS). Results of the multivariate Cox regression analysis showed that clinical stage and presence or absence of residual tumor cells in the lymph nodes after radiotherapy were the independent prognostic factors of OS.Conclusion The TVRR after induction chemotherapy may be an effective predictive indicator of the treatment efficacy of radiotherapy in patients with NPC.展开更多
The shock-induced ignition and detonation wave propagation in reactive elliptic premixed bubbles are numerically studied.Close attention is paid to the bubble geometry effect on the ignition pattern and the ensuing bu...The shock-induced ignition and detonation wave propagation in reactive elliptic premixed bubbles are numerically studied.Close attention is paid to the bubble geometry effect on the ignition pattern and the ensuing bubble behavior.Five elliptic bubbles with different aspect ratios are examined.According to the numerical results,three typical ignition patterns are identified under the same incident shock strength and the underlying mechanisms are interpreted.The difference in ignition pattern shows that,comparing with the inert shock-bubble interaction,the geometry effect in reactive shock-bubble interaction(RSBI)has more implications.In addition to the aspect ratio,the ignition location and the distance from the ignition spot to the nearest/farthest bubble surface should also be considered as elements of the geometry effect in RSBI.展开更多
Over the past decades,the energy and concomitant environment issues,such as energy shortage,air pollution and global warming,have been becoming increasingly striking world-wide challenges[1,2].Such a dilemma in turn a...Over the past decades,the energy and concomitant environment issues,such as energy shortage,air pollution and global warming,have been becoming increasingly striking world-wide challenges[1,2].Such a dilemma in turn appeals to the development and employment of clean and renewable energy.展开更多
Precise control of the local environment and electronic state of the vip is an important method of controlling catalytic activity and reaction pathways.In this paper,vip Pd NPs were introduced into a series of hos...Precise control of the local environment and electronic state of the vip is an important method of controlling catalytic activity and reaction pathways.In this paper,vip Pd NPs were introduced into a series of host UiO-67 MOFs with different functional ligands and metal nodes,the microenvironment and local electronic structure of Pd is modulated by introducing bipyridine groups and changing metal nodes(Ce_(6)O_(6) or Zr_(6)O_(6)).The bipyridine groups not only promoted the dispersion Pd NPs,but also facilitated electron transfer between Pd and UiO-67 MOFs through the formation of Pd-N bridges.Compared with Zr6 clusters,the tunability and orbital hybridisation of the 4f electronic structure in the Ce_(6) clusters modulate the electronic structure of Pd through the construction of the Ce-O-Pd interfaces.The optimal catalyst Pd/UiO-67(Ce)-bpy presented excellent low-temperature activity towards dicyclopentadiene hydrogenation with a conversion of>99% and a selectivity of>99%(50℃,10 bar).The results show that the synergy of Ce-O-Pd and Pd-N promotes the formation of active Pd^(δ+),which not only enhances the adsorption of H_(2) and electron-rich C=C bonds,but also contributes to the reduction of proton migration distance and improves proton utilization efficiency.These results provide valuable insights for investigating the regulatory role of the host MOFs,the nature of host-vip interactions,and their correlation with catalytic performance.展开更多
There is an urgent need to use green non-halogenated solvents to prepare polymer solar cells(PSCs) for industrialization.It is time-consuming but necessary to find a suitable non-halogenated solvent/additive combinati...There is an urgent need to use green non-halogenated solvents to prepare polymer solar cells(PSCs) for industrialization.It is time-consuming but necessary to find a suitable non-halogenated solvent/additive combination for a given donor:acceptor materials system.In this research,we report a non-halogenated binary solvent system toluene/diphenyl ether(DPE) for the PBDTT-DTffBT:PC_(71)BM and PM6:Y6 blending systems that exhibit comparable power conversion efficiency(PCE) to that of devices prepared with halogenated solvents.The nano scale morphology indicates that blending film processed solely with toluene has poor phase segregation and a rough surface,which hinders charge separation and interfacial contact.Besides,the total absorption spectra revealed significant light-trapping losses in the toluene-processed solar cells,resulting in low photocurrent generation.DPE incorporation addresses these issues and significantly improves the short-circuit current density and fill factor.Moreover,non-halogen solvent-processed devices exhibit high hole mobility and low transporting impedance properties.The present study enriches the families of eco-friendly,high-efficiency PSCs fabricated using nonhalogenated solvents.展开更多
●Multiple evanescent white dot syndrome(MEWDS)is a rare fundus disease,characterized by acute vision loss and visual field defects.Many previous studies have explained the possible pathogenesis and clinical features ...●Multiple evanescent white dot syndrome(MEWDS)is a rare fundus disease,characterized by acute vision loss and visual field defects.Many previous studies have explained the possible pathogenesis and clinical features of primary MEWDS.However,as the number of reported cases increases,secondary MEWDS occurs in other related retinal diseases and injuries,exhibiting some special characteristics.The associated retinal diseases include multifocal choroiditis/punctate inner choroidopathy(MFC/PIC),acute zonal occult outer retinopathy,best vitelliform macular dystrophy,pseudoxanthoma elasticum,and ocular toxoplasmosis.The related retinal injury is laser photocoagulation,surgery,and trauma.Although primary MEWDS often have a self-limiting course,secondary MEWDS may require treatment in some cases,according to the severity of concomitant diseases and complications.Notably,MEWDS secondary to MFC/PIC that is prone to forming choroidal neovascularization and focal choroidal excavation,needs positive treatment with corticosteroids.The possible underlying pathogenesis of secondary MEWDS is the exposure of choroidal antigen after the disruption of Bruch’s membrane.The MEWDS-related features in secondary MEWDS are still evanescent under most circumstances.Its prognosis and treatment depend on the severity of complications.Current studies propose that the etiology is associated with immune factors,including viral infection,inflammation in choroid and Bruch’s membrane,and antigen exposure caused by retinal and/or choroidal insults.More pathogenic studies should be conducted in the future.Accurate diagnosis for secondary MEWDS could benefit patients in aspects of management and prognosis.展开更多
Objective To investigate the incidence of chromosome abnormalities in couples with reproductive failure in China and explore the relationship between chromosome abnormalities and reproductive failure.Methods A total o...Objective To investigate the incidence of chromosome abnormalities in couples with reproductive failure in China and explore the relationship between chromosome abnormalities and reproductive failure.Methods A total of 2 158 couples with reproductive failure were enrolled. Lymphocyte culture and harvest were performed according to standard methods. Karyotypes were analyzed by G-banding in all cases and C-banding or R-banding in some cases if necessary.Results Altogether 137 abnormal karyotypes were found and the chromosomal abnormality rate was 3.17%. Among them 3 were numeral abnormalities, 134 were structural aberrations including 90 cases of reciprocal translocations, 34 cases of Roertsonian translocations, 9 cases of inversions, 1 case of deletion: and 43 kinds of which were identified as the first reported karyotypes in world by the National Teaching Center of Medical Cytogenetics in Hunan, China. Totally 378 chromosome heteromorphisms were also detected and the rate was 8.76%.Conclusion Structural aberrations were the major abnormal karyotypes in couples with reproductive failure. Reciprocal and Robertsonian translocations occupied the largest proportions in structural aberrations, and a tendency that the rate of chromosome aberration increases with the times of miscarriages was presented. In addition, heteromorphism rate of chromosomes was high in such patients. Chromosome analysis is an important and necessary part of the etiological research in couples with reproductive failure.展开更多
文摘The development of solid frustrated Lewis pairs(FLPs)catalysts with porous structures is a promising strategy for advancing green hydrogenation technologies and has garnered significant attention.Leveraging the diverse oxidation states and structural tunability of cerium-based metal-organic frameworks(Ce-MOFs),this study employed a competitive coordination strategy utilizing a single carboxylate functional group ligand to construct a series of MOF-808-X(X=-NH_(2),-OH,-Br,and-NO_(2))featuring rich solid-state FLPs for hydrogenation of unsaturated olefins.The-X functional group serves as a microenvironment,enhancing hydrogenation activity by modulating the electronic properties and acid-base characteristics of the FLP sites.The unique redox properties of elemental cerium facilitate the exposure of unsaturated Ce sites(Ce-CUS,Lewis acid(LA))and adjacent Ce-OH(Lewis base(LB))sites within the MOFs,generating abundant solid-state FLP(Ce-CUS/Ce-OH)sites.Experimental results demonstrate that Ce-CUS and Ce-OH interact with theσandσ^(*)orbitals of H-H,and this"push-pull"synergy promotes heterolytic cleavage of the H-H bond.The lone pair electrons of the electron-donating functional group are transmitted through the molecular backbone to the LB site,thereby increasing its strength and reducing the activation energy required for H_(2)heterolytic cleavage.Notably,at 100℃and 2 MPa H_(2),MOF-808-NH_(2)achieves complete conversion of styrene and dicyclopentadiene,significantly outperforming MOF-808.Based on in-situ analysis and density functional theory calculations,a plausible reaction mechanism is proposed.This research enriches the theoretical framework for unsaturated olefin hydrogenation catalysts and contributes to the development of efficient catalytic systems.
基金financially supported by the National Natural Science Foundation of China(No.51902025).
文摘Rapid advances in thermal management technology and the increasing need for multi-energy conversion have placed stringent energy efficiency requirements on next-generation shape-stable composite phase change materials(PCMs).Magnetically-responsive phase change thermal storage materials are considered an emerging concept for energy storage systems,enabling PCMs to perform unprecedented functions(such as green energy utilization,magnetic thermotherapy,drug release,etc.).The combination of multifunctional magnetic nanomaterials and PCMs is a milestone in the creation of advanced multifunctional composite PCMs.However,a timely and comprehensive review of composite PCMs based on magnetic nanoparticle modification is still missing.Herein,we furnish an exhaustive exposition elucidating the cutting-edge advancements in magnetically responsive composite PCMs.We delve deeply into the multifarious roles assumed by distinct nanoparticles within composite PCMs of varying dimensions,meticulously scrutinizing the intricate interplay between their architectures and thermophysical attributes.Moreover,we prognosticate future research trajectories,delineate alternative stratagems,and illuminate prospective avenues.This review is intended to stimulate broader academic interest in interdisciplinary fields and provide valuable insights into the development of next-generation magnetically-responsive composite PCMs.
文摘Defect engineering improves the catalytic performance of metal-organic frameworks(MOFs)loaded metal nanoparticles(MNPs@MOFs),but there is still a challenge in defining the structure-activity relationships.Herein,the content of linker-missing defects in UiO-66(Ce)was systematically regulated via formic acid as the modulators,and defective UiO-66(Ce)loaded Ni nanoparticles(NPs)were constructed for dicyclopentadiene(DCPD)hydrogenation.The fine regulation of defect engineering and reduction conditions affected the structure properties of UiO-66(Ce)and the electronic metal-support interaction between MOFs and Ni NPs,thereby optimizing the microenvironment and electronic state of Ni NPs.The optimized U(Ce)-40eq with suitable defects,small size and structure stability effectively promoted the production of highly dispersed abundant electron-deficient Ni^(0) active sites,enhancing the adsorption and activation of H_(2) and C=C bonds,especially accelerating the rate-determining step.Therefore,U(Ce)-40eq loaded 5 wt%Ni NPs achieved DCPD saturated hydrogenation to tetrahydrodicyclopentadiene(70℃,2 MPa,90 min),superior to most high-loading Ni-based catalysts.This work reveals the synergistic mechanism of MOFs defect engineering and electronic structure of Ni NPs,providing effective guidance for the precise preparation of highly efficient and stable MNPs@MOFs heterogeneous catalysts.
基金supported by the National Key Research and Development Program of China(No.2021YFB3500700)the National Natural Science Foundation of China(No.51972024)+1 种基金Natural Science Foundation of Guangdong Province(No.2022A1515010185)Fundamental Research Funds for the Central Universities(No.FRFEYIT-23-07).
文摘The construction of frustrated Lewis acid-base pairs(FLPs)in porous systems is very important for the field of industrial hydrogenation catalysis,but there is still a great challenge.Based on the Ce^(3+)/Ce^(4+)redox pairs and abundant defects in porous Ce-based metal-organic frameworks(Ce-MOFs),FLP sites consisting of ligand-defective Ce sites(Lewis acid,LA)and neighboring terminal O sites(Lewis base,LB)were constructed in situ by a simple vacuum thermal activation method in lamellar Ce-UiO-66-F.Defects/oxygen vacancies in the Ce-MOFs structure result in the difference in the electron cloud density between Ce and O,which is suitable for H-H hetero-cleavage and H-transfer in the dicyclopentadiene(DCPD)hydrogenation process.Particularly,Ce-UiO-66-F-200 achieved 96.9%conversion of DCPD and 97.8%selectivity of 8,9-dihydrodicyclopentadiene(8,9-DHDCPD)at 100℃ under 2MPa H2 for 10 h,which is 9.4 times higher than 10.2%conversion of DCPD over the unactivated Ce-UiO-66-F.This research promotes the understanding of solid MOFs-based porous FLPs for H_(2) activation,and encourages the in-depth investigation of surface solid FLPs to the whole material FLPs.
文摘The incidence and mortality of hepatocellular carcinoma(HCC) have fallen dramatically in China and elsewhere over the past several decades. Nonetheless, HCC remains a major public health issue as one of the most common malignant tumors worldwide and one of the leading causes of death caused by cancer in China. Hepatocarcinogenesis is a very complex biological process associated with many environmental risk factors and factors in heredity, including abnormal activation of cellular and molecular signaling pathways such as Wnt/β-catenin, hedgehog, MAPK, AKT, and ERK signaling pathways, and the balance between the activation and inactivation of the proto-oncogenes and anti-oncogenes, and the differentiation of liver cancer stem cells. Molecule-targeted therapy, a new approach for the treatment of liver cancer, blocks the growth of cancer cells by interfering with the molecules required for carcinogenesis and tumor growth, making it both specific and selective. However, there is no one drug completely designed for liver cancer, and further development in the research of liver cancer targeted drugs is now almost stagnant. The purpose of this review is to discuss recent advances in our understanding of the molecular mechanisms underlying the development of HCC and in the development of novel strategies for cancer therapeutics.
文摘The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities.In this study,we investigate the feasibility of using ChatGPT in experiments on translating radiology reports into plain language for patients and healthcare providers so that they are educated for improved healthcare.Radiology reports from 62 low-dose chest computed tomography lung cancer screening scans and 76 brain magnetic resonance imaging metastases screening scans were collected in the first half of February for this study.According to the evaluation by radiologists,ChatGPT can successfully translate radiology reports into plain language with an average score of 4.27 in the five-point system with 0.08 places of information missing and 0.07 places of misinformation.In terms of the suggestions provided by ChatGPT,they are generally relevant such as keeping following-up with doctors and closely monitoring any symptoms,and for about 37%of 138 cases in total ChatGPT offers specific suggestions based on findings in the report.ChatGPT also presents some randomness in its responses with occasionally over-simplified or neglected information,which can be mitigated using a more detailed prompt.Furthermore,ChatGPT results are compared with a newly released large model GPT-4,showing that GPT-4 can significantly improve the quality of translated reports.Our results show that it is feasible to utilize large language models in clinical education,and further efforts are needed to address limitations and maximize their potential.
基金supported by the National Natural Science Foundation of China (51902025)China Postdoctoral Science Foundation (2020T130060 and 2019M660520)。
文摘Developing advanced nanocomposite integrating solar-driven thermal energy storage and thermal management functional microwave absorption can facilitate the cutting-edge application of phase change materials(PCMs).To conquer this goal,herein,two-dimensional MoS_(2) nanosheets are grown in situ on the surface of one-dimensional CNTs to prepare core-sheath MoS_(2)@CNTs for the encapsulation of paraffin wax(PW).Benefiting from the synergistic enhancement photothermal effect of MoS_(2) and CNTs,MoS_(2)@CNTs is capable of efficiently trapping photons and quickly transporting phonons,thus yielding a high solar-thermal energy conversion and storage efficiency of 94.97%.Meanwhile,PW/MoS_(2)@CNTs composite PCMs exhibit a high phase change enthalpy of 101.60 J/g and excellent lo ng-term thermal storage durability after undergoing multiple heating-cooling cycles.More attractively,PW/MoS_(2)@CNTs composite PCMs realize thermal management functional microwave absorption in heat-related electronic application scenarios,which is superior to the single microwave absorption of traditional materials.The minimum reflection loss(RL) for PW/MoS_(2)@CNTs is-28 dB at 12.91 GHz with a 2.0 mm thickness.This functional integration design provides some insightful references on developing advanced microwave absorbing composite PCMs,holding great potential towards high-efficiency solar energy utilization and thermally managed microwave absorption fields.
文摘Objective:The role of urgent endoscopy in nonvariceal upper gastrointestinal hemorrhage(NVUGIH)remains controversial.We designed a retrospective study to compare the outcomes between urgent endoscopy(within 12 h)and non-urgent endoscopy for patients with NVUGIH.Methods:A total of 540 hospitalized patients with NVUGIH were included in our study.Patients who received endoscopy within 12 h or after 12 h were divided into two groups,the urgent and non-urgent endoscopy groups,respectively.The clinical outcomes including rebleeding,mortality,endoscopic re-intervention,need for emergency surgery and interventional radiotherapy were compared between the groups.Patients with Glasgow-Blatchford scores(GBS)<12 and>12 were defined as the lower-and high-risk groups,respectively,and the predictors of rebleeding and mortality in both groups were analyzed individually.Results:Patients with NVUGIH in the urgent endoscopy group had a higher rate of rebleeding(27.6%vs.16.9%,P=0.003)and blood transfusion(73.2%vs.55.5%,P<0.001)than those in the non-urgent endoscopy group,while the mortality and the length of hospitalization were not significantly different between the groups(P>0.05).For lower-risk patients,urgent endoscopy was independently associated with a higher likelihood of rebleeding(adjusted OR:1.73,95%CI:1.03-2.88),while it was not associated with in-hospital mortality.However,the urgent need for endoscopy was not associated with rebleeding and in-hospital mortality in high-risk patients.Conclusion:Endoscopy within 12 h did not provide any advantage in the outcomes of patients with NVUGIH,and may even lead to an increased rebleeding rate in lower-risk patients.
基金supported by the Natural Science Foundation of Guangdong Province, China (2014A030310343, 2015A030313153, and 2016A030313253)the Medical Scientific Research Foundation of Guangdong Province, China (A2015382)the Doctoral Program of Guangzhou Medical University, China (2014C19)
文摘In early life, the immune system plays an essential role in brain development. In our study, the immunopotentiator thymosin alpha-1(Ta1) was peripherally administered to neonatal mice to explore whether the peripheral immunopotentiator affects neurodevelopment and cognition, and to further investigate the relevant mechanism. Compared with the control group, the Ta1 mice displayed better cognitive abilities in early life. The numbers of 5-bromodeoxyuridine(Brd U)+, nestin+,T-box transcription factor 2(Tbr2)+, Brd U+/doublecortin(DCX)+, Brd U+/ionized calcium-binding adaptor molecule 1(Iba1)+, and Brd U+/neuronal nuclei(Neu N)+ cells in the hippocampus were increased in the Ta1 group,accompanied by increased interleukin-4(IL-4), interferon-gamma, brain-derived neurotrophic factor, nerve growth factor, and insulin-like growth factor-1 as well as decreased IL-6 and tumor necrosis factor-a. Furthermore, the Ta1-group showed a Th1-polarized immune response, and the neurotrophic factors were positively associated with the Th1/Th2 ratio. More importantly, administration of Ta1 blocked lipopolysaccharide-induced impairment of hippocampal neurogenesis in early life. These findings suggest that peripheral Ta1 contributes to neurogenesis and cognition probably through a systemic Th1 bias, as well as neuroprotection against LPS infection by Ta1.
基金National Natural Science Foundation of China,Grant/Award Number:51902025Fundamental Research Funds for the Central Universities,Grant/Award Numbers:2019NTST29,FRF-BD-20-07A+1 种基金China Postdoctoral Science Foundation,Grant/Award Numbers:2019M660520,2020T130060Scientific and Technological Innovation Foundation of Shunde Graduate School,University of Science and Technology Beijing,Grant/Award Number:BK20AE003。
文摘Extensive use of thermal energy in daily life is ideal for reducing carbon emissions to achieve carbon neutrality;however,the effective collection of thermal energy is a major hurdle.Thermoelectric(TE)conversion technology based on the Seebeck effect and thermal energy storage technology based on phase change materials(PCMs)represent smart,feasible,and research-worthy approaches to overcome this hurdle.However,the integration of multiple thermal energy sources freely existing in the environment for storage and output of thermal and electrical energy simultaneously still remains a huge challenge.Herein,three-dimensional(3D)nanostructured metal-organic frameworks(MOFs)are in situ nucleated and grown onto carbon nanotubes(CNTs)via coordination bonding.After calcination,the prepared core-shell structural CNTs@MOFs are transformed into tightened 1D/3D carbon heterostructure loading Co nanoparticles for efficient solar-thermoelectric energy harvesting.Surprisingly,the corresponding composite PCMs show a record-breaking solar-thermal conversion efficiency of 98.1%due to the tightened carbon heterostructure and the local surface plasmon resonance effect of Co nanoparticles.Moreover,our designed all-in-one composite PCMs are also capable of creating an electrical potential of 0.5 mV based on the Seebeck effect without a TE generator.This promising approach can store thermal and electrical energy simultaneously,providing a new direction in the design of advanced all-in-one multifunctional PCMs for thermal energy storage and utilization.
基金National Key Research and Development Program of China (No. 2016YFB0701100)the National Natural Science Foundation of China (51802015)+1 种基金the Fundamental Research Funds for the Central Universities (FRF-TP-16-028A1)Program of Young Scholar sponsored by Beijing Organization Department (2017000020124G090) for financial support
文摘Electrochemical reduction of water to hydrogen holds great promise for clean energy,while its widespread application relies on the development of efficient catalysts with large surface area,abundant exposed active sites and superior electron conductivity.Herein,we report a facile strategy to configure an electrocatalyst composed of cobalt phosphide and rhodium uniformly anchored on reduced graphene oxide for hydrogen generation.The hybrids effectively integrate the exposed active sites,electron conductivity and synergistic effect of the catalyst.Electrochemical tests exhibit that the catalyst shows superior hydrogen evolution reaction catalytic activity and stability,with a small Tafel slope of 43 m V dec-1.Overpotentials as low as 29 and 72 mV are required to achieve current densities of 2 and 10 mA cm-2in 0.5M H2SO4,respectively.The hybrid constitution with highly active sites on conductive substrate is a new strategy to synthesize extremely efficient electrocatalysts.Especially,the efficient synergistic effect among cobalt phosphide,rhodium and reduced graphene oxide provides a novel approach for configuring electrocatalysts with high electron efficiency.
基金supported by the National Natural Science Foundation of China(Grant Nos.52073115,61874048,12073009)the Project of Science and Technology Development Plan of Jilin Province(Grant No.20200201085JC).
文摘Recently,there has been renewed interest in interface engineering as a means to further push the performance of perovskite solar cells closer to the Schockly-Queisser limit.Herein,for the first time we employ a multi-functional 4-chlorobenzoic acid to produce a self-assembled monolayer on a perovskite surface.With this interlayer we observe passivation of perovskite surface defects and a significant suppression of non-radiative charge recombination.Furthermore,at the surface of the interlayer we observe,charge dipoles which tune the energy level alignment,enabling a larger energetic driving force for hole extraction.The perovskite surface becomes more hydrophilic due to the presence of the interlayer.Consequently,we observe an improvement in open-circuit voltage from 1.08 to 1.16 V,a power conversion efficiency improvement from 18%to 21%and an improved stability under ambient conditions.Our work highlights the potential of SAMs to engineer the photo-electronic properties and stability of perovskite interfaces to achieve high-performance light harvesting devices.
基金This work was financially supported by the National Natural Science Foundation of China(No.51902025)Key Laboratory of Low-grade Energy Utilization Technologies and Systems(Chongqing University),Ministry of Education of China,Chongqing University(No.LLEUTS-202232)+4 种基金Fundamental Research Funds for the Jiangsu Province Universities(No.20KJB430037)Natural Science Foundation of Jiangsu Province(No.BK20220637)Fundamental Research Funds for the Central Universities(Nos.2019NTST29 and FRF-BD-20-07A)China Postdoctoral Science Foundation(Nos.2020T130060 and 2019M660520)Scientific and Technological Innovation Foundation of Shunde Graduate School,University of Science and Technology Beijing(No.BK20AE003).
文摘The liquid leakage and weak solar absorption capacity of organic phase change materials(PCMs)seriously hinder the efficient utilization of solar energy and thermal energy storage.To address these issues,we prepared nanoporous metal organic framework(Ni-MOF)for the vacuum infiltration of paraffin wax(PW),followed by the coating of solar-absorbing functional polydopamine(PDA)on the surface of PW@MOF for photothermal conversion and storage.As an efficient photon harvester,PDA coating endows PW@MOF/PDA composite PCMs with excellent photothermal conversion and storage properties due to the robust broadband solar absorption capability in the UV–vis region.Resultantly,our prepared PW@MOF/PDA composite PCMs exhibit a high photothermal conversion and storage efficiency of 91.2%,while that of PW@MOF composite PCMs is only zero.In addition,PW@MOF/PDA composite PCMs also exhibit excellent thermal stability,shape stability,energy storage stability,and photothermal conversion stability.More importantly,this coating strategy is universal by integrating different MOFs and solar absorbers,showing the potential to accelerate the major breakthroughs of high-efficiency MOF-based photothermal composite PCMs in solar energy utilization.
文摘Objective This study investigated the predictive value of tumor volume reduction rates(TVRRs) before and after induction chemotherapy in determining the radiosensitivity and prognosis of patients with locally advanced nasopharyngeal carcinomas(NPCs). Methods The clinical data of 172 patients with locally advanced primary NPCs who were treated from January 2009 to December 2012 were collected. Tumor regression was evaluated based on the results of the computed tomography scan or magnetic resonance imaging studies. Data about the tumor diameters before and after induction chemotherapy and after radiotherapy as well as the survival times of the patients were obtained. Results All 172 patients had NPCs. After radiotherapy, the TVRR in patients without residual tumor cells was higher than that in patients with residual tumor cells after induction chemotherapy(median values: 47.7% and 15.1%, respectively), and the 5-year survival rates were 80.3% and 45.6%, respectively. Neck lymph node metastasis was observed in 161 of 172 patients, and the TVRRs were similar(median values: 46.8% in 161 patients without residual tumor cells and 11.1% in 161 patients with residual tumor cells). The 5-year survival rate of the 161 patients without residual tumor cells was 84.5%, and that of patients with residual tumor cells was 37.3%. As shown by the receiver operating characteristic(ROC) curve, the area under the curve(AUC) of the ROC curve for TVRRs in patients with primary NPCs but without residual tumors was 0.851, whereas that for TVRRs in patients with neck lymph node metastasis but without residual tumors was 0.784. This result indicates that TVRR has a high diagnostic performance. The univariate Cox regression analysis showed that clinical stage, TVRR in primary NPCs, neck lymph node metastatic lesions before and after induction chemotherapy, presence or absence of residual tumor cells in primary NPCs, and neck lymph node metastatic lesions after radiotherapy were significantly correlated to overall survival(OS). Results of the multivariate Cox regression analysis showed that clinical stage and presence or absence of residual tumor cells in the lymph nodes after radiotherapy were the independent prognostic factors of OS.Conclusion The TVRR after induction chemotherapy may be an effective predictive indicator of the treatment efficacy of radiotherapy in patients with NPC.
基金This work was supported by the National Natural Science Foundation of China(Grant 12002102).
文摘The shock-induced ignition and detonation wave propagation in reactive elliptic premixed bubbles are numerically studied.Close attention is paid to the bubble geometry effect on the ignition pattern and the ensuing bubble behavior.Five elliptic bubbles with different aspect ratios are examined.According to the numerical results,three typical ignition patterns are identified under the same incident shock strength and the underlying mechanisms are interpreted.The difference in ignition pattern shows that,comparing with the inert shock-bubble interaction,the geometry effect in reactive shock-bubble interaction(RSBI)has more implications.In addition to the aspect ratio,the ignition location and the distance from the ignition spot to the nearest/farthest bubble surface should also be considered as elements of the geometry effect in RSBI.
基金supported by the National Natural Science Foundation of China(51972024,51702013,51902025)the Fundamental Research Funds for the Central Universities(FRF-BD-20-07A,2019NTST29)+1 种基金the Scientific and Technological Innovation Foundation of Shunde Graduate School,University of Science and Technology Beijing(BK19AE029)funding from China Scholarship Council。
文摘Over the past decades,the energy and concomitant environment issues,such as energy shortage,air pollution and global warming,have been becoming increasingly striking world-wide challenges[1,2].Such a dilemma in turn appeals to the development and employment of clean and renewable energy.
文摘Precise control of the local environment and electronic state of the vip is an important method of controlling catalytic activity and reaction pathways.In this paper,vip Pd NPs were introduced into a series of host UiO-67 MOFs with different functional ligands and metal nodes,the microenvironment and local electronic structure of Pd is modulated by introducing bipyridine groups and changing metal nodes(Ce_(6)O_(6) or Zr_(6)O_(6)).The bipyridine groups not only promoted the dispersion Pd NPs,but also facilitated electron transfer between Pd and UiO-67 MOFs through the formation of Pd-N bridges.Compared with Zr6 clusters,the tunability and orbital hybridisation of the 4f electronic structure in the Ce_(6) clusters modulate the electronic structure of Pd through the construction of the Ce-O-Pd interfaces.The optimal catalyst Pd/UiO-67(Ce)-bpy presented excellent low-temperature activity towards dicyclopentadiene hydrogenation with a conversion of>99% and a selectivity of>99%(50℃,10 bar).The results show that the synergy of Ce-O-Pd and Pd-N promotes the formation of active Pd^(δ+),which not only enhances the adsorption of H_(2) and electron-rich C=C bonds,but also contributes to the reduction of proton migration distance and improves proton utilization efficiency.These results provide valuable insights for investigating the regulatory role of the host MOFs,the nature of host-vip interactions,and their correlation with catalytic performance.
基金supported by the National Natural Science Foundation of China(No.52073115)the Project of Science and Technology Development Plan of Jilin Province(No.20200201085JC)China Postdoctoral Science Foundation(No.2019M661208)。
文摘There is an urgent need to use green non-halogenated solvents to prepare polymer solar cells(PSCs) for industrialization.It is time-consuming but necessary to find a suitable non-halogenated solvent/additive combination for a given donor:acceptor materials system.In this research,we report a non-halogenated binary solvent system toluene/diphenyl ether(DPE) for the PBDTT-DTffBT:PC_(71)BM and PM6:Y6 blending systems that exhibit comparable power conversion efficiency(PCE) to that of devices prepared with halogenated solvents.The nano scale morphology indicates that blending film processed solely with toluene has poor phase segregation and a rough surface,which hinders charge separation and interfacial contact.Besides,the total absorption spectra revealed significant light-trapping losses in the toluene-processed solar cells,resulting in low photocurrent generation.DPE incorporation addresses these issues and significantly improves the short-circuit current density and fill factor.Moreover,non-halogen solvent-processed devices exhibit high hole mobility and low transporting impedance properties.The present study enriches the families of eco-friendly,high-efficiency PSCs fabricated using nonhalogenated solvents.
基金Supported by the National Natural Science Foundation of China(No.82171073No.82101147).
文摘●Multiple evanescent white dot syndrome(MEWDS)is a rare fundus disease,characterized by acute vision loss and visual field defects.Many previous studies have explained the possible pathogenesis and clinical features of primary MEWDS.However,as the number of reported cases increases,secondary MEWDS occurs in other related retinal diseases and injuries,exhibiting some special characteristics.The associated retinal diseases include multifocal choroiditis/punctate inner choroidopathy(MFC/PIC),acute zonal occult outer retinopathy,best vitelliform macular dystrophy,pseudoxanthoma elasticum,and ocular toxoplasmosis.The related retinal injury is laser photocoagulation,surgery,and trauma.Although primary MEWDS often have a self-limiting course,secondary MEWDS may require treatment in some cases,according to the severity of concomitant diseases and complications.Notably,MEWDS secondary to MFC/PIC that is prone to forming choroidal neovascularization and focal choroidal excavation,needs positive treatment with corticosteroids.The possible underlying pathogenesis of secondary MEWDS is the exposure of choroidal antigen after the disruption of Bruch’s membrane.The MEWDS-related features in secondary MEWDS are still evanescent under most circumstances.Its prognosis and treatment depend on the severity of complications.Current studies propose that the etiology is associated with immune factors,including viral infection,inflammation in choroid and Bruch’s membrane,and antigen exposure caused by retinal and/or choroidal insults.More pathogenic studies should be conducted in the future.Accurate diagnosis for secondary MEWDS could benefit patients in aspects of management and prognosis.
基金supported by the grants from China National "863" program (2002AA223031 to Z.Y.)The National Scientific Foundation of China (30471926 to Z.Y.)
文摘Objective To investigate the incidence of chromosome abnormalities in couples with reproductive failure in China and explore the relationship between chromosome abnormalities and reproductive failure.Methods A total of 2 158 couples with reproductive failure were enrolled. Lymphocyte culture and harvest were performed according to standard methods. Karyotypes were analyzed by G-banding in all cases and C-banding or R-banding in some cases if necessary.Results Altogether 137 abnormal karyotypes were found and the chromosomal abnormality rate was 3.17%. Among them 3 were numeral abnormalities, 134 were structural aberrations including 90 cases of reciprocal translocations, 34 cases of Roertsonian translocations, 9 cases of inversions, 1 case of deletion: and 43 kinds of which were identified as the first reported karyotypes in world by the National Teaching Center of Medical Cytogenetics in Hunan, China. Totally 378 chromosome heteromorphisms were also detected and the rate was 8.76%.Conclusion Structural aberrations were the major abnormal karyotypes in couples with reproductive failure. Reciprocal and Robertsonian translocations occupied the largest proportions in structural aberrations, and a tendency that the rate of chromosome aberration increases with the times of miscarriages was presented. In addition, heteromorphism rate of chromosomes was high in such patients. Chromosome analysis is an important and necessary part of the etiological research in couples with reproductive failure.