Urinary system tumors include malignancies of the bladder,kidney,and prostate,and present considerable challenges in diagnosis and treatment.The conventional therapeutic approaches against urinary tumors are limited b...Urinary system tumors include malignancies of the bladder,kidney,and prostate,and present considerable challenges in diagnosis and treatment.The conventional therapeutic approaches against urinary tumors are limited by the lack of targeted drug delivery and significant adverse effects,thereby necessitating novel solutions.Intelligent nanomedicine has emerged as a promising therapeutic alternative for cancer in recent years,and uses nanoscale materials to overcome the inherent biological barriers of tumors,and enhance diagnostic and therapeutic accuracy.In this review,we have explored the recent advances and applications of intelligent nanomedicine for the diagnosis,imaging,and treatment of urinary tumors.The principles of nanomedicine design pertaining to drug encapsulation,targeting and controlled release have been discussed,with emphasis on the strategies for overcoming renal clearance and tumor heterogeneity.Furthermore,the therapeutic applications of intelligent nanomedicine,its advantages over traditional chemotherapy,and the challenges currently facing clinical translation of nanomedicine,such as safety,regulation and scalability,have also been reviewed.Finally,we have assessed the potential of intelligent nanomedicine in the management of urinary system tumors,emphasizing emerging trends such as personalized nanomedicine and combination therapies.This comprehensive review underscores the substantial contributions of nanomedicine to the field of oncology and offers a promising outlook for more effective and precise treatment strategies for urinary system tumors.展开更多
As the adoption of Vehicular Ad-hoc Networks(VANETs)grows,ensuring secure communication between smart vehicles and remote application servers(APPs)has become a critical challenge.While existing solutions focus on vari...As the adoption of Vehicular Ad-hoc Networks(VANETs)grows,ensuring secure communication between smart vehicles and remote application servers(APPs)has become a critical challenge.While existing solutions focus on various aspects of security,gaps remain in addressing both high security requirements and the resource-constrained nature of VANET environments.This paper proposes an extended-Kerberos protocol that integrates Physical Unclonable Function(PUF)for authentication and key agreement,offering a comprehensive solution to the security challenges in VANETs.The protocol facilitates mutual authentication and secure key agreement between vehicles and APPs,ensuring the confidentiality and integrity of vehicle-to-network(V2N)communications and preventing malicious data injection.Notably,by replacing traditional Kerberos password authentication with Challenge-Response Pairs(CRPs)generated by PUF,the protocol significantly reduces the risk of key leakage.The inherent properties of PUF—such as unclonability and unpredictability—make it an ideal defense against physical attacks,including intrusion,semi-intrusion,and side-channel attacks.The results of this study demonstrate that this approach not only enhances security but also optimizes communication efficiency,reduces latency,and improves overall user experience.The analysis proves that our protocol achieves at least 86%improvement in computational efficiency compared to some existed protocols.This is particularly crucial in resource-constrained VANET environments,where it enables efficient data transmission between vehicles and applications,reduces latency,and enhances the overall user experience.展开更多
Axon regeneration and remyelination of the damaged region is the most common repair strategy for spinal cord injury.However,achieving good outcome remains difficult.Our previous study showed that porcine decellularize...Axon regeneration and remyelination of the damaged region is the most common repair strategy for spinal cord injury.However,achieving good outcome remains difficult.Our previous study showed that porcine decellularized optic nerve better mimics the extracellular matrix of the embryonic porcine optic nerve and promotes the directional growth of dorsal root ganglion neurites.However,it has not been reported whether this material promotes axonal regeneration in vivo.In the present study,a porcine decellularized optic nerve was seeded with neurotrophin-3-overexpressing Schwann cells.This functional scaffold promoted the directional growth and remyelination of regenerating axons.In vitro,the porcine decellularized optic nerve contained many straight,longitudinal channels with a uniform distribution,and microscopic pores were present in the channel wall.The spatial micro topological structure and extracellular matrix were conducive to the adhesion,survival and migration of neural stem cells.The scaffold promoted the directional growth of dorsal root ganglion neurites,and showed strong potential for myelin regeneration.Furthermore,we transplanted the porcine decellularized optic nerve containing neurotrophin-3-overexpressing Schwann cells in a rat model of T10 spinal cord defect in vivo.Four weeks later,the regenerating axons grew straight,the myelin sheath in the injured/transplanted area recovered its structure,and simultaneously,the number of inflammatory cells and the expression of chondroitin sulfate proteoglycans were reduced.Together,these findings suggest that porcine decellularized optic nerve loaded with Schwann cells overexpressing neurotrophin-3 promotes the directional growth of regenerating spinal cord axons as well as myelin regeneration.All procedures involving animals were conducted in accordance with the ethical standards of the Institutional Animal Care and Use Committee of Sun Yat-sen University(approval No.SYSU-IACUC-2019-B034)on February 28,2019.展开更多
AIM. To investigate the influence of heme oxygenase-1 (HO-1) gene transfer on the viability and function of cultured rat islets in vitro. METHODS: Islets were isolated from the pancreata of Sprague-Dawley rats by i...AIM. To investigate the influence of heme oxygenase-1 (HO-1) gene transfer on the viability and function of cultured rat islets in vitro. METHODS: Islets were isolated from the pancreata of Sprague-Dawley rats by intraductal collagenase digestion, and purified by discontinuous Ficoll density gradient centrifugation. Purified rat islets were transfected with adenoviral vectors containing human HO-1 gene (Ad- HO-1) or enhanced green fluorescent protein gene (Ad- EGFP), and then cultured for seven days. Transfection was confirmed by fluorescence microscopy and Western blot. Islet viability was evaluated by acridine orange/ propidium iodide fluorescent staining. Glucose-stimulated insulin release was detected using insulin radioimmunoassay kits and was used to assess the function of islets. Stimulation index (SI) was calculated by dividing the insulin release upon high glucose stimulation by the insulin release upon low glucose stimulation. RESULTS: After seven days culture, the viability of cultured rat islets decreased significantly (92% ± 6% vs 52% ± 13%, P 〈 0.05), and glucose-stimulated insulin release also decreased significantly (6.47 ± 0.55 mIU/ L/30IEO vs 4.57 ± 0.40 mIU/L/3OIEO., 14.93 ± 1.17 mIU/L/30IEQ vs 9.63 ± 0.71 mIU/L/30IEQ, P 〈 0.05). Transfection of rat islets with adenoviral vectors at an 1±10 of 20 was efficient, and did not impair islet function. At 7 d post-transfection, the viability of Ad-HO-1 transfected islets was higher than that of control islets(71% ± 15% vs 52% ± 13%, P 〈 0.05). There was no significant difference in insulin release upon low glucose stimulation (2.8 mmol/L) among Ad-HO-1 transfected group, Ad-EGFP transfected group, and control group (P 〉 0.05), while when stimulated by high glucose (16.7 mmol/L) solution, insulin release in Ad-HO-1 transfected group was significantly higher than that in Ad-EGFP transfected group and control group, respectively (12.50 ±2.17 mIU/L/30IEQ vs 8.87 ± 0.65 mIU/L/30IEQ, 12.50 ± 2.17 mIU/L/30IEQ vs 9.63 ± 0.71 mIU/L/30IEQ, P 〈 0.05). The SI of Ad-HO-1 transfected group was also significantly higher than that of Ad-EGFP transfected group and control group, respectively (2.21 ± 0.02 vs 2.08 ± 0.05; 2.21 ± 0.02 vs 2.11 ± 0.03, P 〈 0.05). CONCLUSION: The viability and function of rat islets decrease over time in in vitro culture, and heine oxygenase-1 gene transfer could improve the viability and function of cultured rat islets.展开更多
The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electro...The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electrolyte interface layer is an effective strategy to improve the stability of Zn anodes.Herein,we report an ultrathin zincophilic ZnS layer as a model regu-lator.At a given cycling current,the cell with Zn@ZnS electrode displays a lower potential drop over the Helmholtz layer(stern layer)and a suppressed diffuse layer,indicating the regulated charge distribution and decreased electric double layer repulsion force.Boosted zinc adsorption sites are also expected as proved by the enhanced electric double-layer capacitance.Consequently,the symmetric cell with the ZnS protection layer can stably cycle for around 3,000 h at 1 mA cm^(-2) with a lower overpotential of 25 mV.When coupled with an I2/AC cathode,the cell demonstrates a high rate performance of 160 mAh g^(-1) at 0.1 A g^(-1) and long cycling stability of over 10,000 cycles at 10 A g^(-1).The Zn||MnO_(2) also sustains both high capacity and long cycling stability of 130 mAh g^(-1) after 1,200 cycles at 0.5 A g^(-1).展开更多
Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient elec...Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors.As the battery-type materials,transition metal phosphides(TMPs)possess high theoretical specific capacity,good electrical conductivity and superior structural stability,which have been extensively studied to be electrode materials for supercapacitors.In this review,we summarize the up-to-date progress on TMPs materials from diversified synthetic methods,diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors.In the end,we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage.展开更多
This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon redu...This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon reduction.However,the corrosive effects of alkali metal compounds,sulfur(S)and chlorine(Cl)elements in the ash after combustion cannot be underestimated due to the high volatile content of biomass fuels.We investigate the corrosion mechanisms,as well as the transfer of Cl and alkali metal elements during this process.Comparative corrosion analyses are conducted among coal-fired boilers,pure biomass boilers and boilers with coupled combustion.Various biomass types in co-firing are studied to understand different corrosion outcomes.The main factors influencing corrosion include the physicochemical properties of biomass feedstock,furnace temperature and heating surface materials,with the chemical composition and ash content of biomass playing a dominant role.Currently,the methods used for anti-corrosion include water washing pretreatment of biomass feedstock,application of novel alloys and coatings and the development of additives to inhibit fouling,ash deposition and corrosion.Efficient inhibitors are economical and easy to produce.Additionally,biomass can be converted into biomass gasification gas,although challenges related to tar still need to be addressed.展开更多
本文旨在开发和验证基于系统分析程序(Software of Enriched Improvement on RELAP,SENIOR)的螺旋管换热器模型,以优化小型模块化反应堆(Small Modular Reactors,SMR)中的螺旋管直流蒸汽发生器(Helical Coil Once Through Steam Generat...本文旨在开发和验证基于系统分析程序(Software of Enriched Improvement on RELAP,SENIOR)的螺旋管换热器模型,以优化小型模块化反应堆(Small Modular Reactors,SMR)中的螺旋管直流蒸汽发生器(Helical Coil Once Through Steam Generator,HCOTSG)设计,并为一体化小堆的热工水力性能分析提供支持。本文采用控制体积法,针对螺旋管内复杂的流动和传热特性选取不同换热工况的经验关系式进行模拟,并通过上海交通大学通用热工水力设备回路(GETHY)台架获得的螺旋管换热器试验数据,对模型的准确性进行了验证。结果表明,SENIOR程序能够准确预测OTSG在不同工况下的热工水力性能,所得到的热工水力参数与试验数据吻合良好,总体误差小于2%。因此,SENIOR程序在一体化小堆设计中具有重要应用价值,能够为实现一体化小堆的优化设计和安全运行提供可靠的技术支持。展开更多
Nb2O5-carbon nanocomposite is synthesized through a facile one-step hydrothermal reaction from sucrose as the carbon source, and stuclled as an anode material for high-performance lithium ion battery. The structural c...Nb2O5-carbon nanocomposite is synthesized through a facile one-step hydrothermal reaction from sucrose as the carbon source, and stuclled as an anode material for high-performance lithium ion battery. The structural characterizations reveal that the nanocomposite possesses a core-shell structure with a thin layer of carbon shell homogeneously coated on the Nb2O5 nanocrystals. Such a unique structure enables the composite electrode with a long cycle life by preventing the Nb2O5 from volume change and pulverization during the charge-discharge process. In addition, the carbon shell efficiently improves the rate capability. Even at a current density of 500 mA.g-1, the composite electrode still exhibits a specific capacity of ~100 mAh.g-1. These results suggest the possibility to utilize the Nb2O5-carbon core-shell composite as a high performance anode material in the practical application of lithium ion battery.展开更多
Rational design of hierarchically structured electrocatalysts is particularly important for electrocatalytic oxygen reduction reaction(ORR).Here,ZIF-67 crystals are stringed on core-shell Ag@C nanocables using a coord...Rational design of hierarchically structured electrocatalysts is particularly important for electrocatalytic oxygen reduction reaction(ORR).Here,ZIF-67 crystals are stringed on core-shell Ag@C nanocables using a coordinationmodulated process.Upon pyrolysis,Ag@C strings of Co nanoparticles embedded with three-dimensional porous carbon with beads-on-string hierarchical structures are developed.Due to the advantages of the rich electrochemical active sites of Co-based“beads”and the efficient electron transfer pathways via Ag@C“strings,”the resultant NH_(3)-Ag@C@Co-N-C-700 catalyst shows an improved electrocatalytic activity toward ORR.NH_(3)-Ag@C@Co-N-C-700 shows a high onset potential of 0.99 V versus RHE,a high half-wave potential of 0.88 V versus RHE,and a large limiting current of 5.8 mA cm^(-2),which are better than those of commercial Pt/C electrocatalysts.Additionally,the NH_(3)-Ag@C@Co-N-C-700 catalyst shows high stability and preeminent methanol tolerance,which makes NH_(3)-Ag@C@Co-N-C-700 a promising catalyst for oxygen electrocatalysis in fuel cell applications.展开更多
1.Introduction During massive data movements in digital computing systems,several issues have emerged such as high latency,energy ineffi-ciency,and low bandwidth due to the physical separation of pro-cessor and memory...1.Introduction During massive data movements in digital computing systems,several issues have emerged such as high latency,energy ineffi-ciency,and low bandwidth due to the physical separation of pro-cessor and memory units(so-called memory wall)[1-3].To miti-gate the data-movement limitations,three-dimensional(3D)chip integration becomes an optimal solution within von Neumann ar-chitecture since the dense vertical interconnections shorten the distance between chips[4,5].However,the extensively used micro solder bumps for 3D chip stacking impede the further improve-ment of interconnection pitch(<10μm).In this scenario,the Cu/SiO_(2) hybrid bonding technology came into being.Owing to the coexistence of planarized Cu connections and SiO_(2) layers,Cu/SiO_(2) hybrid bonding is the desirable enabler of submicron ultra-dense integration(<1μm),which benefits from Cu-Cu and SiO_(2)-SiO_(2) homogeneous direct bonding replacing micro bumps and underfill[6,7].展开更多
文摘Urinary system tumors include malignancies of the bladder,kidney,and prostate,and present considerable challenges in diagnosis and treatment.The conventional therapeutic approaches against urinary tumors are limited by the lack of targeted drug delivery and significant adverse effects,thereby necessitating novel solutions.Intelligent nanomedicine has emerged as a promising therapeutic alternative for cancer in recent years,and uses nanoscale materials to overcome the inherent biological barriers of tumors,and enhance diagnostic and therapeutic accuracy.In this review,we have explored the recent advances and applications of intelligent nanomedicine for the diagnosis,imaging,and treatment of urinary tumors.The principles of nanomedicine design pertaining to drug encapsulation,targeting and controlled release have been discussed,with emphasis on the strategies for overcoming renal clearance and tumor heterogeneity.Furthermore,the therapeutic applications of intelligent nanomedicine,its advantages over traditional chemotherapy,and the challenges currently facing clinical translation of nanomedicine,such as safety,regulation and scalability,have also been reviewed.Finally,we have assessed the potential of intelligent nanomedicine in the management of urinary system tumors,emphasizing emerging trends such as personalized nanomedicine and combination therapies.This comprehensive review underscores the substantial contributions of nanomedicine to the field of oncology and offers a promising outlook for more effective and precise treatment strategies for urinary system tumors.
基金supported in part by the Jiangsu“Qing Lan Project”,Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Major Research Project:23KJA520007)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX25_1303).
文摘As the adoption of Vehicular Ad-hoc Networks(VANETs)grows,ensuring secure communication between smart vehicles and remote application servers(APPs)has become a critical challenge.While existing solutions focus on various aspects of security,gaps remain in addressing both high security requirements and the resource-constrained nature of VANET environments.This paper proposes an extended-Kerberos protocol that integrates Physical Unclonable Function(PUF)for authentication and key agreement,offering a comprehensive solution to the security challenges in VANETs.The protocol facilitates mutual authentication and secure key agreement between vehicles and APPs,ensuring the confidentiality and integrity of vehicle-to-network(V2N)communications and preventing malicious data injection.Notably,by replacing traditional Kerberos password authentication with Challenge-Response Pairs(CRPs)generated by PUF,the protocol significantly reduces the risk of key leakage.The inherent properties of PUF—such as unclonability and unpredictability—make it an ideal defense against physical attacks,including intrusion,semi-intrusion,and side-channel attacks.The results of this study demonstrate that this approach not only enhances security but also optimizes communication efficiency,reduces latency,and improves overall user experience.The analysis proves that our protocol achieves at least 86%improvement in computational efficiency compared to some existed protocols.This is particularly crucial in resource-constrained VANET environments,where it enables efficient data transmission between vehicles and applications,reduces latency,and enhances the overall user experience.
基金supported by grants from the National Key R&D Program of China,No.2017YFA0104704(to BQL)the Young Elite Scientist Sponsorship Program(YESS)by China Association for Science and Technology(CAST),No.2018QNRC001(to BQL)+1 种基金the Fundamental Research Funds for the Central Universities,China,No.18ykpy38(to BQL)the National Natural Science Foundation of China,Nos.81971157(to BQL),81891003(to YSZ).
文摘Axon regeneration and remyelination of the damaged region is the most common repair strategy for spinal cord injury.However,achieving good outcome remains difficult.Our previous study showed that porcine decellularized optic nerve better mimics the extracellular matrix of the embryonic porcine optic nerve and promotes the directional growth of dorsal root ganglion neurites.However,it has not been reported whether this material promotes axonal regeneration in vivo.In the present study,a porcine decellularized optic nerve was seeded with neurotrophin-3-overexpressing Schwann cells.This functional scaffold promoted the directional growth and remyelination of regenerating axons.In vitro,the porcine decellularized optic nerve contained many straight,longitudinal channels with a uniform distribution,and microscopic pores were present in the channel wall.The spatial micro topological structure and extracellular matrix were conducive to the adhesion,survival and migration of neural stem cells.The scaffold promoted the directional growth of dorsal root ganglion neurites,and showed strong potential for myelin regeneration.Furthermore,we transplanted the porcine decellularized optic nerve containing neurotrophin-3-overexpressing Schwann cells in a rat model of T10 spinal cord defect in vivo.Four weeks later,the regenerating axons grew straight,the myelin sheath in the injured/transplanted area recovered its structure,and simultaneously,the number of inflammatory cells and the expression of chondroitin sulfate proteoglycans were reduced.Together,these findings suggest that porcine decellularized optic nerve loaded with Schwann cells overexpressing neurotrophin-3 promotes the directional growth of regenerating spinal cord axons as well as myelin regeneration.All procedures involving animals were conducted in accordance with the ethical standards of the Institutional Animal Care and Use Committee of Sun Yat-sen University(approval No.SYSU-IACUC-2019-B034)on February 28,2019.
基金Supported by the National Natural Science Foundation of China, No. 30571759Social Development Foundation of Shanghai, No. 200253
文摘AIM. To investigate the influence of heme oxygenase-1 (HO-1) gene transfer on the viability and function of cultured rat islets in vitro. METHODS: Islets were isolated from the pancreata of Sprague-Dawley rats by intraductal collagenase digestion, and purified by discontinuous Ficoll density gradient centrifugation. Purified rat islets were transfected with adenoviral vectors containing human HO-1 gene (Ad- HO-1) or enhanced green fluorescent protein gene (Ad- EGFP), and then cultured for seven days. Transfection was confirmed by fluorescence microscopy and Western blot. Islet viability was evaluated by acridine orange/ propidium iodide fluorescent staining. Glucose-stimulated insulin release was detected using insulin radioimmunoassay kits and was used to assess the function of islets. Stimulation index (SI) was calculated by dividing the insulin release upon high glucose stimulation by the insulin release upon low glucose stimulation. RESULTS: After seven days culture, the viability of cultured rat islets decreased significantly (92% ± 6% vs 52% ± 13%, P 〈 0.05), and glucose-stimulated insulin release also decreased significantly (6.47 ± 0.55 mIU/ L/30IEO vs 4.57 ± 0.40 mIU/L/3OIEO., 14.93 ± 1.17 mIU/L/30IEQ vs 9.63 ± 0.71 mIU/L/30IEQ, P 〈 0.05). Transfection of rat islets with adenoviral vectors at an 1±10 of 20 was efficient, and did not impair islet function. At 7 d post-transfection, the viability of Ad-HO-1 transfected islets was higher than that of control islets(71% ± 15% vs 52% ± 13%, P 〈 0.05). There was no significant difference in insulin release upon low glucose stimulation (2.8 mmol/L) among Ad-HO-1 transfected group, Ad-EGFP transfected group, and control group (P 〉 0.05), while when stimulated by high glucose (16.7 mmol/L) solution, insulin release in Ad-HO-1 transfected group was significantly higher than that in Ad-EGFP transfected group and control group, respectively (12.50 ±2.17 mIU/L/30IEQ vs 8.87 ± 0.65 mIU/L/30IEQ, 12.50 ± 2.17 mIU/L/30IEQ vs 9.63 ± 0.71 mIU/L/30IEQ, P 〈 0.05). The SI of Ad-HO-1 transfected group was also significantly higher than that of Ad-EGFP transfected group and control group, respectively (2.21 ± 0.02 vs 2.08 ± 0.05; 2.21 ± 0.02 vs 2.11 ± 0.03, P 〈 0.05). CONCLUSION: The viability and function of rat islets decrease over time in in vitro culture, and heine oxygenase-1 gene transfer could improve the viability and function of cultured rat islets.
基金financially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC),through the Discovery Grant Program (RGPIN-2018-06725)the Discovery Accelerator Supplement Grant program (RGPAS-2018-522651)+2 种基金the New Frontiers in Research Fund-Exploration program (NFRFE-2019-00488)supported by funding from the Canada First Research Excellence Fund as part of the University of Alberta’s Future Energy Systems research initiative (FES-T06-Q03)supported by the Chinese Scholarship Council (CSC)(Grant No. 202006450027).
文摘The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electrolyte interface layer is an effective strategy to improve the stability of Zn anodes.Herein,we report an ultrathin zincophilic ZnS layer as a model regu-lator.At a given cycling current,the cell with Zn@ZnS electrode displays a lower potential drop over the Helmholtz layer(stern layer)and a suppressed diffuse layer,indicating the regulated charge distribution and decreased electric double layer repulsion force.Boosted zinc adsorption sites are also expected as proved by the enhanced electric double-layer capacitance.Consequently,the symmetric cell with the ZnS protection layer can stably cycle for around 3,000 h at 1 mA cm^(-2) with a lower overpotential of 25 mV.When coupled with an I2/AC cathode,the cell demonstrates a high rate performance of 160 mAh g^(-1) at 0.1 A g^(-1) and long cycling stability of over 10,000 cycles at 10 A g^(-1).The Zn||MnO_(2) also sustains both high capacity and long cycling stability of 130 mAh g^(-1) after 1,200 cycles at 0.5 A g^(-1).
基金supported by National Undergraduate Training Programs for Innovations[grant number 202210225259]the Outstanding Youth Project of Natural Science Foundation in Heilongjiang Province(YQ2022E040)+3 种基金the Shandong Provincial Natural Science Foundation(ZR2022ME166)the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBH-Q20023)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2020197)the 111 Project(B20088).
文摘Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors.As the battery-type materials,transition metal phosphides(TMPs)possess high theoretical specific capacity,good electrical conductivity and superior structural stability,which have been extensively studied to be electrode materials for supercapacitors.In this review,we summarize the up-to-date progress on TMPs materials from diversified synthetic methods,diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors.In the end,we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage.
文摘This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon reduction.However,the corrosive effects of alkali metal compounds,sulfur(S)and chlorine(Cl)elements in the ash after combustion cannot be underestimated due to the high volatile content of biomass fuels.We investigate the corrosion mechanisms,as well as the transfer of Cl and alkali metal elements during this process.Comparative corrosion analyses are conducted among coal-fired boilers,pure biomass boilers and boilers with coupled combustion.Various biomass types in co-firing are studied to understand different corrosion outcomes.The main factors influencing corrosion include the physicochemical properties of biomass feedstock,furnace temperature and heating surface materials,with the chemical composition and ash content of biomass playing a dominant role.Currently,the methods used for anti-corrosion include water washing pretreatment of biomass feedstock,application of novel alloys and coatings and the development of additives to inhibit fouling,ash deposition and corrosion.Efficient inhibitors are economical and easy to produce.Additionally,biomass can be converted into biomass gasification gas,although challenges related to tar still need to be addressed.
文摘本文旨在开发和验证基于系统分析程序(Software of Enriched Improvement on RELAP,SENIOR)的螺旋管换热器模型,以优化小型模块化反应堆(Small Modular Reactors,SMR)中的螺旋管直流蒸汽发生器(Helical Coil Once Through Steam Generator,HCOTSG)设计,并为一体化小堆的热工水力性能分析提供支持。本文采用控制体积法,针对螺旋管内复杂的流动和传热特性选取不同换热工况的经验关系式进行模拟,并通过上海交通大学通用热工水力设备回路(GETHY)台架获得的螺旋管换热器试验数据,对模型的准确性进行了验证。结果表明,SENIOR程序能够准确预测OTSG在不同工况下的热工水力性能,所得到的热工水力参数与试验数据吻合良好,总体误差小于2%。因此,SENIOR程序在一体化小堆设计中具有重要应用价值,能够为实现一体化小堆的优化设计和安全运行提供可靠的技术支持。
基金supported by Nano Special Plan from Shanghai Municipal Science and Technology Plan of Commission(No.l052nm06900)
文摘Nb2O5-carbon nanocomposite is synthesized through a facile one-step hydrothermal reaction from sucrose as the carbon source, and stuclled as an anode material for high-performance lithium ion battery. The structural characterizations reveal that the nanocomposite possesses a core-shell structure with a thin layer of carbon shell homogeneously coated on the Nb2O5 nanocrystals. Such a unique structure enables the composite electrode with a long cycle life by preventing the Nb2O5 from volume change and pulverization during the charge-discharge process. In addition, the carbon shell efficiently improves the rate capability. Even at a current density of 500 mA.g-1, the composite electrode still exhibits a specific capacity of ~100 mAh.g-1. These results suggest the possibility to utilize the Nb2O5-carbon core-shell composite as a high performance anode material in the practical application of lithium ion battery.
基金Higher Education Discipline Innovation Project,Grant/Award Number:D17007Xinxiang Major Science and Technology Projects,Grant/Award Number:21ZD001+1 种基金Henan Center for Outstanding Overseas Scientists,Grant/Award Number:GZS2022017National Natural Science Foundation of China,Grant/Award Numbers:51872075,51922008,52072114。
文摘Rational design of hierarchically structured electrocatalysts is particularly important for electrocatalytic oxygen reduction reaction(ORR).Here,ZIF-67 crystals are stringed on core-shell Ag@C nanocables using a coordinationmodulated process.Upon pyrolysis,Ag@C strings of Co nanoparticles embedded with three-dimensional porous carbon with beads-on-string hierarchical structures are developed.Due to the advantages of the rich electrochemical active sites of Co-based“beads”and the efficient electron transfer pathways via Ag@C“strings,”the resultant NH_(3)-Ag@C@Co-N-C-700 catalyst shows an improved electrocatalytic activity toward ORR.NH_(3)-Ag@C@Co-N-C-700 shows a high onset potential of 0.99 V versus RHE,a high half-wave potential of 0.88 V versus RHE,and a large limiting current of 5.8 mA cm^(-2),which are better than those of commercial Pt/C electrocatalysts.Additionally,the NH_(3)-Ag@C@Co-N-C-700 catalyst shows high stability and preeminent methanol tolerance,which makes NH_(3)-Ag@C@Co-N-C-700 a promising catalyst for oxygen electrocatalysis in fuel cell applications.
基金financially supported by the National Natural Science Foundation of China(Nos.92164105 and 51975151)the Heilongjiang Provincial Natural Science Foundation of China(No.LH2019E041)the Heilongjiang Touyan Innovation Team Pro-gram(No.HITTY-20190013).
文摘1.Introduction During massive data movements in digital computing systems,several issues have emerged such as high latency,energy ineffi-ciency,and low bandwidth due to the physical separation of pro-cessor and memory units(so-called memory wall)[1-3].To miti-gate the data-movement limitations,three-dimensional(3D)chip integration becomes an optimal solution within von Neumann ar-chitecture since the dense vertical interconnections shorten the distance between chips[4,5].However,the extensively used micro solder bumps for 3D chip stacking impede the further improve-ment of interconnection pitch(<10μm).In this scenario,the Cu/SiO_(2) hybrid bonding technology came into being.Owing to the coexistence of planarized Cu connections and SiO_(2) layers,Cu/SiO_(2) hybrid bonding is the desirable enabler of submicron ultra-dense integration(<1μm),which benefits from Cu-Cu and SiO_(2)-SiO_(2) homogeneous direct bonding replacing micro bumps and underfill[6,7].