Colloidal quantum dots(CQDs)are affected by the quantum confinement effect,which makes their bandgap tunable.This characteristic allows these materials to cover a broader infrared spectrum,providing a costeffective al...Colloidal quantum dots(CQDs)are affected by the quantum confinement effect,which makes their bandgap tunable.This characteristic allows these materials to cover a broader infrared spectrum,providing a costeffective alternative to traditional infrared detector technology.Recently,thanks to the solution processing properties of quantum dots and their ability to integrate with silicon-based readout circuits on a single chip,infrared detectors based on HgTe CQDs have shown great application prospects.However,facing the challenges of vertically stacked photovoltaic devices,such as barrier layer matching and film non-uniformity,most devices integrated with readout circuits still use a planar structure,which limits the efficiency of light absorption and the effective separation and collection of photo-generated carriers.Here,by synthesizing high-quality HgTe CQDs and precisely controlling the interface quality,we have successfully fabricated a photovoltaic detector based on HgTe and ZnO QDs.At a working temperature of 80 K,this detector achieved a low dark current of 5.23×10^(-9)A cm^(-2),a high rectification ratio,and satisfactory detection sensitivity.This work paves a new way for the vertical integration of HgTe CQDs on silicon-based readout circuits,demonstrating their great potential in the field of high-performance infrared detection.展开更多
The Tongbai-East Qinling Mountains, an important part of the Central orogenic belt, is one of the most important metallogenic belts in China and contains lots of orogenic-type and VMS-type (Volcanogenic Massive Sulfi...The Tongbai-East Qinling Mountains, an important part of the Central orogenic belt, is one of the most important metallogenic belts in China and contains lots of orogenic-type and VMS-type (Volcanogenic Massive Sulfide type) metallogenic systems. The Dahe and Shuidongling VMS-type Cu-Zn deposits, located in the Erlangping Group in Tongbai and East Qinling Mountains, respectively, show similar geological and geochemical features. The Huoshenmiao Formation in the East Qinling region and the Liushanyan Formation in the Tongbai region are spilite-keratophyre sequences occurring in the western and eastern sides of the Nanyang Basin, respectively, and are interpreted to be equivalent to each other. The orogenic-type Au-Ag deposits can be subdivided into two styles; namely, fault- or structure-controlled (e.g. Yindonggou) and stratabound (e.g. Poshan). The Poshan and Yindongpo orogenic-type Au-Ag deposits, whose ore bodies are strictly hosted in carbonaceous strata in the Tongbai Mountains, show obvious stratabound characteristics. Their ore-fluids are enriched in K^+ and SO^2-4 and are regarded as K^+-SO^2-4 types. The Pb-isotope ratios of sulfides of the ores are extremely uniform and significantly different from those of the tectonostratigraphic terranes of the Qinling orogens except for the ore-hosting strata of the Waitoushan Formation. The Yindonggou and Xuyaogou orogenic Au-Ag deposits in the East Qinling Mountains, whose ore bodies are hosted in the faults cutting the hosting strata or granite body, show fault-controlled characteristics. Their ore-fluids belong to the Na^+-Cl^- type. The Pb-isotope ratios of sulfides of ores are similar to those of the northern Qinling orogenic belt. The Waitoushan Formation, dominated by carbonaceous sericite-rich schists and only occurring in Tongbai region, should be detached from the Erlangping Group, which occurs both in the western and eastern sides of the Nanyang Basin. Future ore exploration in the Tongbai-East Qinling Mountains should focus on fault-controlled Au-Ag lodes.展开更多
目的:探讨头颈部黏膜黑色素瘤(head and neck mucosal melanoma,HNMM)的临床特征及预后影响因素。方法:回顾性分析2014~2023年四川省肿瘤医院收治的HNMM患者的临床资料,观察其临床特征及预后影响因素。生存分析采用Kaplan-Meier法,单因...目的:探讨头颈部黏膜黑色素瘤(head and neck mucosal melanoma,HNMM)的临床特征及预后影响因素。方法:回顾性分析2014~2023年四川省肿瘤医院收治的HNMM患者的临床资料,观察其临床特征及预后影响因素。生存分析采用Kaplan-Meier法,单因素分析采用Log-rank检验,多因素分析采用Cox比例风险模型。结果:共44例患者符合纳入排除标准,患者中位年龄60岁,男:女=1.1:1。肿瘤原发部位包括鼻腔鼻窦(n=36,81.8%)、口腔(n=5,11.4%)和其他(n=3,6.8%)。中位随访时间10个月,中位总生存期(overall survival,OS)11.58个月,1年、3年和5年的累积OS率分别为44.6%、22.0%和12.2%。初诊年龄、发病部位、AJCC分期、手术方式、是否2次手术、是否放疗、是否化疗、是否靶向治疗、初诊是否有远处转移、术后淋巴结转移的OS比较差异均无统计学意义(均P>0.05),免疫治疗(HR=0.320,95%CI:0.1~1.0,P=0.020)是HNMM患者预后的影响因素。结论:HNMM恶性程度高,预后差,在手术基础上联合免疫治疗可能会提高生存率。展开更多
基金Supported by National Key Research and Development Program in the 14th five year plan(2021YFA1200700)Strategic Priority Re⁃search Program of the Chinese Academy of Sciences(XDB0580000)Natural Science Foundation of China(62025405,62104235,62105348).
文摘Colloidal quantum dots(CQDs)are affected by the quantum confinement effect,which makes their bandgap tunable.This characteristic allows these materials to cover a broader infrared spectrum,providing a costeffective alternative to traditional infrared detector technology.Recently,thanks to the solution processing properties of quantum dots and their ability to integrate with silicon-based readout circuits on a single chip,infrared detectors based on HgTe CQDs have shown great application prospects.However,facing the challenges of vertically stacked photovoltaic devices,such as barrier layer matching and film non-uniformity,most devices integrated with readout circuits still use a planar structure,which limits the efficiency of light absorption and the effective separation and collection of photo-generated carriers.Here,by synthesizing high-quality HgTe CQDs and precisely controlling the interface quality,we have successfully fabricated a photovoltaic detector based on HgTe and ZnO QDs.At a working temperature of 80 K,this detector achieved a low dark current of 5.23×10^(-9)A cm^(-2),a high rectification ratio,and satisfactory detection sensitivity.This work paves a new way for the vertical integration of HgTe CQDs on silicon-based readout circuits,demonstrating their great potential in the field of high-performance infrared detection.
基金supported by the"973"project (2006CB403500),NSFC(Nos.40502012,40730421 and 40425006)the 111 Project(No.B07011).
文摘The Tongbai-East Qinling Mountains, an important part of the Central orogenic belt, is one of the most important metallogenic belts in China and contains lots of orogenic-type and VMS-type (Volcanogenic Massive Sulfide type) metallogenic systems. The Dahe and Shuidongling VMS-type Cu-Zn deposits, located in the Erlangping Group in Tongbai and East Qinling Mountains, respectively, show similar geological and geochemical features. The Huoshenmiao Formation in the East Qinling region and the Liushanyan Formation in the Tongbai region are spilite-keratophyre sequences occurring in the western and eastern sides of the Nanyang Basin, respectively, and are interpreted to be equivalent to each other. The orogenic-type Au-Ag deposits can be subdivided into two styles; namely, fault- or structure-controlled (e.g. Yindonggou) and stratabound (e.g. Poshan). The Poshan and Yindongpo orogenic-type Au-Ag deposits, whose ore bodies are strictly hosted in carbonaceous strata in the Tongbai Mountains, show obvious stratabound characteristics. Their ore-fluids are enriched in K^+ and SO^2-4 and are regarded as K^+-SO^2-4 types. The Pb-isotope ratios of sulfides of the ores are extremely uniform and significantly different from those of the tectonostratigraphic terranes of the Qinling orogens except for the ore-hosting strata of the Waitoushan Formation. The Yindonggou and Xuyaogou orogenic Au-Ag deposits in the East Qinling Mountains, whose ore bodies are hosted in the faults cutting the hosting strata or granite body, show fault-controlled characteristics. Their ore-fluids belong to the Na^+-Cl^- type. The Pb-isotope ratios of sulfides of ores are similar to those of the northern Qinling orogenic belt. The Waitoushan Formation, dominated by carbonaceous sericite-rich schists and only occurring in Tongbai region, should be detached from the Erlangping Group, which occurs both in the western and eastern sides of the Nanyang Basin. Future ore exploration in the Tongbai-East Qinling Mountains should focus on fault-controlled Au-Ag lodes.