In this paper, a combined viscoelasticity-viscoplasticity model, coupled with anisotropic damage and moisture effects, is developed for short fiber reinforced polymers (SFRPs) with different fiber contents and subject...In this paper, a combined viscoelasticity-viscoplasticity model, coupled with anisotropic damage and moisture effects, is developed for short fiber reinforced polymers (SFRPs) with different fiber contents and subjected to a variety of strain rates. In our model, a rate-dependent yield surface for the matrix phase is employed to identify initial yielding of the material. When an SFRP is loaded at small deformation before yielding, its viscoelastic behavior can be described using the generalized Maxwell model, while when plasticity occurs, a scalar internal state variable (ISV) is used to capture the hardening behavior caused by the polymeric constituent of the composite. The material degradation due to the moisture absorption of the composite is modeled by employing another type of ISV with different evolution equations. The complicated damage state of the SFRPs is captured by a second rank tensor, which is further decomposed to model the subscale damage mechanisms of micro-voids/cracks nucleation, growth and coalescence. It is concluded that the proposed constitutive model can be used to accurately describe complicated behaviors of SFRPs because the results predicted from the model are in good agreement with the experimental data.展开更多
Cu-based materials are ideal catalysts for CO_(2) electrocatalytic reduction reaction(CO_(2)RR) into multicarbon products.However,such reactions require stringent conditions on local environments of catalyst surfaces,...Cu-based materials are ideal catalysts for CO_(2) electrocatalytic reduction reaction(CO_(2)RR) into multicarbon products.However,such reactions require stringent conditions on local environments of catalyst surfaces,which currently are the global pressing challenges.Here,a stabilized activation of Cu^(0)/Cu^(+)-onAg interface by N_(2) cold plasma treatment was developed for improving Faradaic efficiency(FE) of CO_(2)RR into C2 products.The resultant Ag@Cu-CuN_x exhibits a C2 FE of 72% with a partial current density of-14.9 mA cm^(-2) at-1.0 V vs.RHE(reversible hydrogen electrode).Combining density functional theory(DFT) and experimental investigations,we unveiled that Cu^(0)/Cu^(+) species can be co ntrollably tu ned by the incorporation of nitrogen to form CuN_x on Ag surface,i.e.,Ag@Cu-CuN_x.This strategy enhances ^(*)CO intermediates generation and accelerates C-C coupling both thermodynamically and kinetically.The intermediates O^(*)C^(*)CO,^(*)COOH,and ^(*)CO were detected by in-situ attenuated total internal reflection surface enhanced infrared absorption spectroscopy(ATR-SEIRAS).The uncovered CO_(2)RR-into-C2 products were carried out along CO_(2)→^(*)COOH→^(*)CO→O^(*)C^(*)CO→^(*)C_(2)H_(3)O→^(*)C_(2)H_(4)O→ C_(2)H_(5)OH(or ^(*)C_(2)H_(3)O→^(*)O+C_(2)H_(4)) paths over Ag@Cu-CuN_x electrocatalyst.This work provides a new approach to design Cu-based electrocatalysts with high-efficiency,mild condition,and stable CO_(2)RR to C2 products.展开更多
In this work,we discuss the origin of several anomalies present in the point-contact Andreev reflection spectra of(Li1-xFex)OHFeSe,LiTi2O4,and La2-xCexCuO4.While these features are similar to those stemming from int...In this work,we discuss the origin of several anomalies present in the point-contact Andreev reflection spectra of(Li1-xFex)OHFeSe,LiTi2O4,and La2-xCexCuO4.While these features are similar to those stemming from intrinsic superconducting properties,such as Andreev reflection,electron-boson coupling,multigap superconductivity,d-wave and p-wave pairing symmetry,they cannot be accounted for by the modified Blonder–Tinkham–Klapwijk(BTK) model,but require to consider critical current effects arising from the junction geometry.Our results point to the importance of tracking the evolution of the dips and peaks in the differential conductance as a function of the bias voltage,in order to correctly deduce the properties of the superconducting state.展开更多
For human heads that experienced repetitive subconcussive impacts,abnormal accumulation of hyperphosphorylated tau(p-tau)proteins was found in the postmortem brain tissue.To numerically understand the cause–effect re...For human heads that experienced repetitive subconcussive impacts,abnormal accumulation of hyperphosphorylated tau(p-tau)proteins was found in the postmortem brain tissue.To numerically understand the cause–effect relationship between the external force and the microscopic volume change of the p-tau protein,we created a mesoscale finite element model of the multilayer brain tissue containing microscopic voids representing the p-tau proteins.The model was applied under the loading boundary conditions obtained from a larger length scale simulation.A formerly developed internal state variable elastoplasticity model was implemented to describe the constitutive behaviors of gray and white matters,while the cerebrospinal fluid was assumed to be purely elastic.The effects of the initial sizes and distances of p-tau proteins located at four different brain regions(frontal,parietal,temporal and occipital lobes)on their volumetric evolutions were studied.It is concluded that both the initial sizes and distances of the proteins have more or less(depending on the specific brain region)influential effects on the growth or contraction rate of the p-tau protein.The p-tau proteins located within the brain tissue at the frontal and occipital lobes are more heavily affected by the frontal impact load compared with those at the parietal and temporal lobes.In summary,the modeling approach presented in this paper provides a strategy for mechanically studying the evolution of p-tau proteins in the brain tissue and gives insight into understanding the correlation between macroscopic force and microstructure change of the brain tissue.展开更多
The shale revolution has turned the United States from an oil importer into an oil exporter.The success of shale oil production in the U.S.has inspired many countries,including China,to begin the exploitation and deve...The shale revolution has turned the United States from an oil importer into an oil exporter.The success of shale oil production in the U.S.has inspired many countries,including China,to begin the exploitation and development of shale oil resources.In this study,the production curves of over 30,000 shale oil wells in the Bakken,Eagle Ford(EF)and Permian are systematically analyzed to provide reference and guidance for future shale oil development.To find out the most suitable decline curve models for shale oil wells,fifteen models and a new fitting method are tested on wells with production history over 6 years.Interestingly,all basins show similar results despite of their varieties in geological conditions:stretched exponential production decline(SEPD)+Arps model provides most accurate prediction of estimated ultimate recovery(EUR)for wells with over 2 years'production,while the Arps model can be used before the two years'switch point.With the EUR calculated by decline curve analysis,we further construct simple regression models for different basins to predict the EUR quickly and early.This work helps us better understand the production of shale oil wells,as well as provide important suggestions for the choices of models for shale oil production prediction.展开更多
Stress separation is usually achieved by solving differential equations of equilibrium after parameter determination from isochromatics and isoclinics.The numerical error resulting from the stress determination is a m...Stress separation is usually achieved by solving differential equations of equilibrium after parameter determination from isochromatics and isoclinics.The numerical error resulting from the stress determination is a main concern as it is always a function of parameters in discretization.To improve the accuracy of stress calculation,a novel meshless barycentric rational interpolation collocation method(BRICM)is proposed.The derivatives of the shear stress on the calculation path are determined by using the differential matrix which converts the differential form of the equations of equilibrium into a series of algebraic equations.The advantage of the proposed method is that the auxiliary lines,grids,and error accumulation which are commonly used in traditional shear difference methods(SDMs)are not required.Simulation and experimental results indicate that the proposed meshless method is able to provide high computational accuracy in the full-field stress determination.展开更多
We studied the role of oxygen in Pr2 CuO_(4±δ) thin films fabricated by the polymer assisted deposition method. The magnetoresistance and Hall resistivity of Pr2 CuO_(4±δ) samples were systematically inves...We studied the role of oxygen in Pr2 CuO_(4±δ) thin films fabricated by the polymer assisted deposition method. The magnetoresistance and Hall resistivity of Pr2 CuO_(4±δ) samples were systematically investigated. It was found that with decreasing oxygen content, the low-temperature Hall coefficient(RH) and magnetoresistance changed from negative to positive, similar to those with the increase of Ce-doped concentration in R_(2-x)Ce_x CuO_4 (R = La, Nd, Pr, Sm, Eu). In addition, we observed that the dependence of the superconducting critical temperature Tc with RH for the Pr_(2-x) Ce_x CuO_4 perfectly overlapped with that of Pr_2 CuO_(4±δ) . These findings point to the fact that the doped electrons induced by the oxygen removal are responsible for the superconductivity of the T-phase parent compounds.展开更多
The ingenious hierarchical structure of enamel composed of rods and protein produces excellent fracture resistance.However,the fracture resistance mechanism in the inner enamel is unknown.The micromechanical models of...The ingenious hierarchical structure of enamel composed of rods and protein produces excellent fracture resistance.However,the fracture resistance mechanism in the inner enamel is unknown.The micromechanical models of enamel are constructed to numerically analyze the mechanical behaviors of the inner enamel with different decussation angles and different decussation planes.The results show that the manner of crack propagation in the inner enamel,including crack bridging,crack deflection,and crack bifurcation,is determined by both the rod decussation angle and the decussation plane.In the case of the strong decussation plane,the fracture strength and the required energy dissipation with the decussation angles of 15°and 30°are much higher than those without decussation,demonstrating that decussation is an important mechanism in improving the fracture resistance of enamel.The maximum tensile stress of enamel with the decussation angle of 15°is slightly higher than that of enamel with the decussation angle of 30°,illustrating that an optimal decussation angle exists which balances the strength and toughness.The synergetic mechanism of the decussation angle and the decussation plane on the crack propagation provides a new design hint for bionic composites.展开更多
Centrifugal blood pumps have become popular for adult extracorporeal membrane oxygenation(ECMO)due to their superior blood handling and reduced thrombosis risk featured by their secondary flow paths that avoid stagnan...Centrifugal blood pumps have become popular for adult extracorporeal membrane oxygenation(ECMO)due to their superior blood handling and reduced thrombosis risk featured by their secondary flow paths that avoid stagnant areas.However,the high rotational speed within a centrifugal blood pump can introduce high shear stress,causing a significant shear-induced hemolysis rate.The Revolution pump,the Rotaflow pump,and the CentriMag pump are three of the leading centrifugal blood pumps on the market.Although many experimental and computational studies have focused on evaluating the hydraulic and hemolytic performances of the Rotaflow and CentriMag pumps,there are few on the Revolution pump.Furthermore,a thorough direct comparison of these three pumps'flow characteristics and hemolysis is not available.In this study,we conducted a computational and experimental analysis to compare the hemolytic performances of the Revolution,Rotaflow,and CentriMag pumps operating under a clinically relevant condition,i.e.,the blood flow rate of 5 L/min and pump pressure head of 350 mmHg,for adult ECMO support.In silico simulations were used to characterize the shear stress distributions and predict the hemolysis index,while in vitro blood loop studies experimentally determined hemolysis performance.Comparative simulation results and experimental data demonstrated that the CentriMag pump caused the lowest hemolysis while the Revolution pump generated the highest hemolysis.展开更多
CaKFe_(4)As_(4) is a new-type superconductor with a relatively high transition temperature of 35 K among stoichiometric iron-based superconductors. Based on scanning tunneling microscopy/spectroscopy, the surface morp...CaKFe_(4)As_(4) is a new-type superconductor with a relatively high transition temperature of 35 K among stoichiometric iron-based superconductors. Based on scanning tunneling microscopy/spectroscopy, the surface morphology and electronic structure of CaKFe_(4)As_(4) single crystal were systematically investigated. The cleaved CaKFe_(4)As_(4) showed various morphologies, such as atomically resolved 1×1, 1×2, and √2×√2 lattices. By analyzing the geometrical correlations of these morphologies, the 1×1 and 1×2 lattices were identified as the original and reconstructed As layers, respectively, whereas the √2×√2 lattice was distinguished as the reconstructed alkaline-earth-metal or alkali-metal layer. The superconducting energy gap of 7.3 me V and bosonic mode of 12.7 me V were resolved in the scanning tunneling spectra. In addition, the superconducting energy gaps measured on different terminations were identical and consistent with the values obtained by bulk-sensitive techniques, indicating that the electronic structures of CaKFe_(4)As_(4) were insensitive to the surface reconstructions. Our study clarifies the relationships between complex surface reconstructions and surface terminations and preliminarily presents that there is no obvious effect of surface reconstructions on electronic states.展开更多
We report systematic in-plane magnetoresistance measurements on the electron-doped cuprate La2-x,.CexCuO4±δ thin films as a function of Ce doping and oxygen content in the magnetic field up to 14 T. A crossover ...We report systematic in-plane magnetoresistance measurements on the electron-doped cuprate La2-x,.CexCuO4±δ thin films as a function of Ce doping and oxygen content in the magnetic field up to 14 T. A crossover from negative to positive magnetoresistance occurs between the doping level x = 0.07 and 0.08. Above x = 0.08, the positive magnetoresistance effect appears, and is almost indiscernible at x = 0.15. By tuning the oxygen content, the as-grown samples show negative magnetoresistance effect, whereas the optimally annealed ones display positive magnetoresistance effect at the doping level x = 0.15. Intriguingly, a linear-field dependence of in-plane magnetoresistanee is observed at the underdoping level x = 0.06, the optimal doping level x = 0. i and slightly overdoping level x = 0.11. These anomalies of in-plane magnetoresistance may be related to the intrinsic inhomogeneity in the cuprates, which is discussed in the framework of network model.展开更多
文摘In this paper, a combined viscoelasticity-viscoplasticity model, coupled with anisotropic damage and moisture effects, is developed for short fiber reinforced polymers (SFRPs) with different fiber contents and subjected to a variety of strain rates. In our model, a rate-dependent yield surface for the matrix phase is employed to identify initial yielding of the material. When an SFRP is loaded at small deformation before yielding, its viscoelastic behavior can be described using the generalized Maxwell model, while when plasticity occurs, a scalar internal state variable (ISV) is used to capture the hardening behavior caused by the polymeric constituent of the composite. The material degradation due to the moisture absorption of the composite is modeled by employing another type of ISV with different evolution equations. The complicated damage state of the SFRPs is captured by a second rank tensor, which is further decomposed to model the subscale damage mechanisms of micro-voids/cracks nucleation, growth and coalescence. It is concluded that the proposed constitutive model can be used to accurately describe complicated behaviors of SFRPs because the results predicted from the model are in good agreement with the experimental data.
基金the National Natural Science Foundation of China (21902017)the Foundation of technological innovation and application development of Chongqing (cstc2021jscxmsxm X0308, CSTB2022BSXM-JCX0132)+1 种基金the Youth project of science and technology research program of Chongqing Education Commission of China (KJQN20211107)the Scientific Research Foundation of Chongqing University of Technology (2020ZDZ022, 2021PYZ13)。
文摘Cu-based materials are ideal catalysts for CO_(2) electrocatalytic reduction reaction(CO_(2)RR) into multicarbon products.However,such reactions require stringent conditions on local environments of catalyst surfaces,which currently are the global pressing challenges.Here,a stabilized activation of Cu^(0)/Cu^(+)-onAg interface by N_(2) cold plasma treatment was developed for improving Faradaic efficiency(FE) of CO_(2)RR into C2 products.The resultant Ag@Cu-CuN_x exhibits a C2 FE of 72% with a partial current density of-14.9 mA cm^(-2) at-1.0 V vs.RHE(reversible hydrogen electrode).Combining density functional theory(DFT) and experimental investigations,we unveiled that Cu^(0)/Cu^(+) species can be co ntrollably tu ned by the incorporation of nitrogen to form CuN_x on Ag surface,i.e.,Ag@Cu-CuN_x.This strategy enhances ^(*)CO intermediates generation and accelerates C-C coupling both thermodynamically and kinetically.The intermediates O^(*)C^(*)CO,^(*)COOH,and ^(*)CO were detected by in-situ attenuated total internal reflection surface enhanced infrared absorption spectroscopy(ATR-SEIRAS).The uncovered CO_(2)RR-into-C2 products were carried out along CO_(2)→^(*)COOH→^(*)CO→O^(*)C^(*)CO→^(*)C_(2)H_(3)O→^(*)C_(2)H_(4)O→ C_(2)H_(5)OH(or ^(*)C_(2)H_(3)O→^(*)O+C_(2)H_(4)) paths over Ag@Cu-CuN_x electrocatalyst.This work provides a new approach to design Cu-based electrocatalysts with high-efficiency,mild condition,and stable CO_(2)RR to C2 products.
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2015CB921000,2016YFA0300301,and 2017YFA0302902)the National Natural Science Foundation of China(Grant Nos.11674374 and 1474338)+5 种基金the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDB-SSW-SLH008)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB07020100 and XDB07030200)the Beijing Municipal Science and Technology Project(Grant No.Z161100002116011)the Fonds de la Recherche Scientifique–FNRS and the ARC Grant 13/18-08 for Concerted Research Actions,financed by the French Community of Belgium(Wallonia-Brussels Federation)Jérémy Brisbois acknowledges the support from F.R.S.–FNRS(Research Fellowship)The work of Alejandro V Silhanek is partially supported by PDR T.0106.16 of the F.R.S.–FNRS
文摘In this work,we discuss the origin of several anomalies present in the point-contact Andreev reflection spectra of(Li1-xFex)OHFeSe,LiTi2O4,and La2-xCexCuO4.While these features are similar to those stemming from intrinsic superconducting properties,such as Andreev reflection,electron-boson coupling,multigap superconductivity,d-wave and p-wave pairing symmetry,they cannot be accounted for by the modified Blonder–Tinkham–Klapwijk(BTK) model,but require to consider critical current effects arising from the junction geometry.Our results point to the importance of tracking the evolution of the dips and peaks in the differential conductance as a function of the bias voltage,in order to correctly deduce the properties of the superconducting state.
基金the Shanghai Young Eastern Scholar Fund under Grant No.QD2020015.
文摘For human heads that experienced repetitive subconcussive impacts,abnormal accumulation of hyperphosphorylated tau(p-tau)proteins was found in the postmortem brain tissue.To numerically understand the cause–effect relationship between the external force and the microscopic volume change of the p-tau protein,we created a mesoscale finite element model of the multilayer brain tissue containing microscopic voids representing the p-tau proteins.The model was applied under the loading boundary conditions obtained from a larger length scale simulation.A formerly developed internal state variable elastoplasticity model was implemented to describe the constitutive behaviors of gray and white matters,while the cerebrospinal fluid was assumed to be purely elastic.The effects of the initial sizes and distances of p-tau proteins located at four different brain regions(frontal,parietal,temporal and occipital lobes)on their volumetric evolutions were studied.It is concluded that both the initial sizes and distances of the proteins have more or less(depending on the specific brain region)influential effects on the growth or contraction rate of the p-tau protein.The p-tau proteins located within the brain tissue at the frontal and occipital lobes are more heavily affected by the frontal impact load compared with those at the parietal and temporal lobes.In summary,the modeling approach presented in this paper provides a strategy for mechanically studying the evolution of p-tau proteins in the brain tissue and gives insight into understanding the correlation between macroscopic force and microstructure change of the brain tissue.
基金funded by the National Natural Science Foundation of China(Grant No.52374043)the Key Program of National Natural Science Foundation of China(Grant No.52234003)。
文摘The shale revolution has turned the United States from an oil importer into an oil exporter.The success of shale oil production in the U.S.has inspired many countries,including China,to begin the exploitation and development of shale oil resources.In this study,the production curves of over 30,000 shale oil wells in the Bakken,Eagle Ford(EF)and Permian are systematically analyzed to provide reference and guidance for future shale oil development.To find out the most suitable decline curve models for shale oil wells,fifteen models and a new fitting method are tested on wells with production history over 6 years.Interestingly,all basins show similar results despite of their varieties in geological conditions:stretched exponential production decline(SEPD)+Arps model provides most accurate prediction of estimated ultimate recovery(EUR)for wells with over 2 years'production,while the Arps model can be used before the two years'switch point.With the EUR calculated by decline curve analysis,we further construct simple regression models for different basins to predict the EUR quickly and early.This work helps us better understand the production of shale oil wells,as well as provide important suggestions for the choices of models for shale oil production prediction.
基金Project supported by the National Key R&D Program of China(No.2018YFF01014200)the National Natural Science Foundation of China(Nos.11727804,11872240,12072184,12002197,and 51732008)the China Postdoctoral Science Foundation(Nos.2020M671070 and 2021M692025)。
文摘Stress separation is usually achieved by solving differential equations of equilibrium after parameter determination from isochromatics and isoclinics.The numerical error resulting from the stress determination is a main concern as it is always a function of parameters in discretization.To improve the accuracy of stress calculation,a novel meshless barycentric rational interpolation collocation method(BRICM)is proposed.The derivatives of the shear stress on the calculation path are determined by using the differential matrix which converts the differential form of the equations of equilibrium into a series of algebraic equations.The advantage of the proposed method is that the auxiliary lines,grids,and error accumulation which are commonly used in traditional shear difference methods(SDMs)are not required.Simulation and experimental results indicate that the proposed meshless method is able to provide high computational accuracy in the full-field stress determination.
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2015CB921000,2016YFA0300301,2017YFA0303003,and2018YFB0704100)the National Natural Science Foundation of China(Grant Nos.11674374 and 11474338)+2 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDB-SSW-SLH008)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grants Nos.XDB07020100 and XDB07030200)the Beijing Municipal Science and Technology Project,China(Grant No.Z161100002116011)
文摘We studied the role of oxygen in Pr2 CuO_(4±δ) thin films fabricated by the polymer assisted deposition method. The magnetoresistance and Hall resistivity of Pr2 CuO_(4±δ) samples were systematically investigated. It was found that with decreasing oxygen content, the low-temperature Hall coefficient(RH) and magnetoresistance changed from negative to positive, similar to those with the increase of Ce-doped concentration in R_(2-x)Ce_x CuO_4 (R = La, Nd, Pr, Sm, Eu). In addition, we observed that the dependence of the superconducting critical temperature Tc with RH for the Pr_(2-x) Ce_x CuO_4 perfectly overlapped with that of Pr_2 CuO_(4±δ) . These findings point to the fact that the doped electrons induced by the oxygen removal are responsible for the superconductivity of the T-phase parent compounds.
基金Project supported by the National Natural Science Foundation of China(Nos.12072184,12002197,12202257)。
文摘The ingenious hierarchical structure of enamel composed of rods and protein produces excellent fracture resistance.However,the fracture resistance mechanism in the inner enamel is unknown.The micromechanical models of enamel are constructed to numerically analyze the mechanical behaviors of the inner enamel with different decussation angles and different decussation planes.The results show that the manner of crack propagation in the inner enamel,including crack bridging,crack deflection,and crack bifurcation,is determined by both the rod decussation angle and the decussation plane.In the case of the strong decussation plane,the fracture strength and the required energy dissipation with the decussation angles of 15°and 30°are much higher than those without decussation,demonstrating that decussation is an important mechanism in improving the fracture resistance of enamel.The maximum tensile stress of enamel with the decussation angle of 15°is slightly higher than that of enamel with the decussation angle of 30°,illustrating that an optimal decussation angle exists which balances the strength and toughness.The synergetic mechanism of the decussation angle and the decussation plane on the crack propagation provides a new design hint for bionic composites.
基金The author(s)disclosed receipt of the following financial support for the research,authorship,and/or publication of this article:This work was funded by National Institutes of Health(Grant Numbers:R01HL118372,R01HL124170,R01HL131750,and R01HL141817)This publication was made possible by the University of Maryland Baltimore Institute for Clinical and Translational Research(ICTR)which is funded in part by Grant Number TL1 TR003100 from the National Center for Advancing Translational Sciences(NCATS)a component of the National Institutes of Health(NIH),and NIH Roadmap for Medical Research.Its contents are solely the responsibility of the authors and do not necessarily represent the official view of the University of Maryland Baltimore ICTR,NCATS or NIH.
文摘Centrifugal blood pumps have become popular for adult extracorporeal membrane oxygenation(ECMO)due to their superior blood handling and reduced thrombosis risk featured by their secondary flow paths that avoid stagnant areas.However,the high rotational speed within a centrifugal blood pump can introduce high shear stress,causing a significant shear-induced hemolysis rate.The Revolution pump,the Rotaflow pump,and the CentriMag pump are three of the leading centrifugal blood pumps on the market.Although many experimental and computational studies have focused on evaluating the hydraulic and hemolytic performances of the Rotaflow and CentriMag pumps,there are few on the Revolution pump.Furthermore,a thorough direct comparison of these three pumps'flow characteristics and hemolysis is not available.In this study,we conducted a computational and experimental analysis to compare the hemolytic performances of the Revolution,Rotaflow,and CentriMag pumps operating under a clinically relevant condition,i.e.,the blood flow rate of 5 L/min and pump pressure head of 350 mmHg,for adult ECMO support.In silico simulations were used to characterize the shear stress distributions and predict the hemolysis index,while in vitro blood loop studies experimentally determined hemolysis performance.Comparative simulation results and experimental data demonstrated that the CentriMag pump caused the lowest hemolysis while the Revolution pump generated the highest hemolysis.
基金supported by the National Key Basic Research Program of China(Grant Nos.2017YFA0302902,2016YFA0300301,2017YFA0303003,and 2018YFB0704102)the National Natural Science Foundation of China(Grant Nos.11927808,11834016,118115301,119611410,11961141008,11822411,and 11961160699)+5 种基金the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant Nos.QYZDBSSW-SLH008,and QYZDY-SSW-SLH001)the Strategic Priority Research Program(B)of Chinese Academy of Sciences(Grant Nos.XDB25000000,and XDB33000000)the Beijing Natural Science Foundation(Grant Nos.Z190008,and JQ19002)the Key-Area Research and Development Program of Guangdong Province(Grant No.2020B0101340002)the CAS Interdisciplinary Innovation Teamsupport from the Youth Innovation Promotion Association of CAS(Grant No.Y202001)。
文摘CaKFe_(4)As_(4) is a new-type superconductor with a relatively high transition temperature of 35 K among stoichiometric iron-based superconductors. Based on scanning tunneling microscopy/spectroscopy, the surface morphology and electronic structure of CaKFe_(4)As_(4) single crystal were systematically investigated. The cleaved CaKFe_(4)As_(4) showed various morphologies, such as atomically resolved 1×1, 1×2, and √2×√2 lattices. By analyzing the geometrical correlations of these morphologies, the 1×1 and 1×2 lattices were identified as the original and reconstructed As layers, respectively, whereas the √2×√2 lattice was distinguished as the reconstructed alkaline-earth-metal or alkali-metal layer. The superconducting energy gap of 7.3 me V and bosonic mode of 12.7 me V were resolved in the scanning tunneling spectra. In addition, the superconducting energy gaps measured on different terminations were identical and consistent with the values obtained by bulk-sensitive techniques, indicating that the electronic structures of CaKFe_(4)As_(4) were insensitive to the surface reconstructions. Our study clarifies the relationships between complex surface reconstructions and surface terminations and preliminarily presents that there is no obvious effect of surface reconstructions on electronic states.
基金supported by the National Key Basic Research Program of China (Grant Nos. 2015CB921000, and 2016YFA0300301)the National Natural Science Foundation of China (Grant Nos. 11674374, and 11474338)the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH008)
文摘We report systematic in-plane magnetoresistance measurements on the electron-doped cuprate La2-x,.CexCuO4±δ thin films as a function of Ce doping and oxygen content in the magnetic field up to 14 T. A crossover from negative to positive magnetoresistance occurs between the doping level x = 0.07 and 0.08. Above x = 0.08, the positive magnetoresistance effect appears, and is almost indiscernible at x = 0.15. By tuning the oxygen content, the as-grown samples show negative magnetoresistance effect, whereas the optimally annealed ones display positive magnetoresistance effect at the doping level x = 0.15. Intriguingly, a linear-field dependence of in-plane magnetoresistanee is observed at the underdoping level x = 0.06, the optimal doping level x = 0. i and slightly overdoping level x = 0.11. These anomalies of in-plane magnetoresistance may be related to the intrinsic inhomogeneity in the cuprates, which is discussed in the framework of network model.