期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
考虑非傅里叶微尺度效应涂层基体复合结构热冲击强度研究
1
作者 崔高伟 于松洁 许光映 《固体力学学报》 CAS CSCD 北大核心 2024年第2期225-237,共13页
针对在涂层热冲击研究中忽略非傅里叶传热微尺度效应的问题,本文引入一维平板涂层基体复合结构物理模型,建立涂层双曲线型传热、基体抛物线型传热的数学模型Ⅰ,并根据交界面处的传热行为建立合理边界条件.在此基础上,构建了涂层、基体... 针对在涂层热冲击研究中忽略非傅里叶传热微尺度效应的问题,本文引入一维平板涂层基体复合结构物理模型,建立涂层双曲线型传热、基体抛物线型传热的数学模型Ⅰ,并根据交界面处的传热行为建立合理边界条件.在此基础上,构建了涂层、基体的热弹性力学模型.采用隐式差分法对模型离散化处理,得到温度场的数值解,进而求得应力场,并给出了具体算例.同时,建立涂层和基体均为抛物线型传热的数学模型Ⅱ作为对比研究.结果表明:当初始条件和热扰动均相同,并考虑非傅里叶传热的微尺度效应时,在涂层内,模型Ⅰ热应力表现出变化的延迟性、分布的局域性以及波动性,任意位置热应力都不是从0开始变化,而模型Ⅱ不存在波动性,任意位置热应力从0开始变化.模型Ⅰ热应力产生后,率先达峰且峰值大于模型Ⅱ.在基体内,模型Ⅰ热应力大于模型Ⅱ,且变化梯度较大.在交界面处,模型Ⅰ产生“反射效应”,此处应力值以及应力骤降值均大于模型Ⅱ.对比表明,模型Ⅰ受到的热冲击更加复杂剧烈.该研究为极端热传导环境下确保涂层可靠性提供了有益参考. 展开更多
关键词 涂层基体复合结构 非傅里叶热传导 温度场 热应力
原文传递
Flow field characteristics,mixing and emissions performance of a lab-scale rich-quench-lean trapped-vortex combustor utilizing a quench orifice plate combined with a bluff-body 被引量:2
2
作者 Bo JIANG gaowei cui +3 位作者 Yi JIN Ziqiang ZHAO Dong LIU Xiaomin HE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第4期476-492,共17页
In this study,the low emission combustion technology of Rich-Quench-Lean(RQL)has been applied in Trapped-Vortex Combustor(TVC),and the combinative RQL-TVC shows a promising low emissions performance.By utilizing a que... In this study,the low emission combustion technology of Rich-Quench-Lean(RQL)has been applied in Trapped-Vortex Combustor(TVC),and the combinative RQL-TVC shows a promising low emissions performance.By utilizing a quench orifice plate combined with a bluffbody,a lab-scale RQL-TVC was designed.The flow fields of RQL-TVC were measured by 2-D PIV and predicted by 3-D numerical simulation.Flow structures,radial profiles of normalized mean axial velocity,turbulence intensity and mixing level of the quench zone were analyzed.Results reveal that the dual-vortex and the single-vortex flow patterns both exist in cavities and quench zone of RQL-TVC,and the turbulence intensity is strong in the quench zone with some reverse flows.The spiral vortex was discussed by 3-D streamlines and the detail flow structures of the quench zone were analyzed based on the numerical results.The mixing level of the quench zone was determined,and results show that the quench device enhances the mixing level compared with TVC.Combustion efficiency and emissions performance were investigated experimentally,and results demon-strate that RQL-TVC has relatively higher combustion efficiency and lower emission index of CO,UHC and NO_xthan the same size lab-scale TVC in present work. 展开更多
关键词 RQL TVC Quench orifice plate Flow field Mixing level Emissions performance
原文传递
Oscillation quenching and physical explanation on freeplay-based aeroelastic airfoil in transonic viscous flow 被引量:2
3
作者 Yayun SHI Shun HE +2 位作者 gaowei cui Gang CHEN Yan LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第10期124-136,共13页
Limit Cycle Oscillation(LCO)quenching of a supercritical airfoil(NLR 7301)considering freeplay is investigated in transonic viscous flow.Computational Fluid Dynamics(CFD)based on Navier-Stokes equations is implemented... Limit Cycle Oscillation(LCO)quenching of a supercritical airfoil(NLR 7301)considering freeplay is investigated in transonic viscous flow.Computational Fluid Dynamics(CFD)based on Navier-Stokes equations is implemented to calculate transonic aerodynamic forces.A loosely coupled scheme with steady CFD and an efficient graphic method are developed to obtain the aerodynamic preload.LCO quenching phenomenon is observed from the nonlinear dynamic aeroelastic response obtained by using time marching approach.As the airspeed increases,LCO appears then quenches,forming the first LCO branch.Following the quenching region,LCO occurs again and sustains until the divergence of the response,forming the second LCO branch.The quenching of LCOs was addressed physically based on the aerodynamic preload and the linear flutter characteristic.An“island”of stable region is observed in the flutter boundary,i.e.the flutter speed versus the mean Angle of Attack(AoA).The LCO quenches when the aerodynamic preload crosses this stable region with the increasing of airspeed.The LCO quenching of this model in transonic flow is essentially induced by destabilizing effect from aerodynamic preload,since the flutter speed is sensitive to AoA due to aerodynamic nonlinearity. 展开更多
关键词 Freeplay Nonlinear aeroelasticity Supercritical airfoil Transonic flutter Unsteady flow
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部