In this paper,a model of activated carbon was established by molecular simulation and the separation performance of N2 and CH4 on activated carbon was studied.In order to evaluate the adsorption selectivity and diffus...In this paper,a model of activated carbon was established by molecular simulation and the separation performance of N2 and CH4 on activated carbon was studied.In order to evaluate the adsorption selectivity and diffusion selectivity of N2 and CH4,Grand Canonical Monte Carlo and molecular dynamic methods were used to obtain equilibrium adsorption isotherms and mean square displacements of N2 and CH4 on activated carbon with different pore sizes.Research results showed that the difference in adsorption isosteric heat of N2 and CH4 at the pore size of 0.46 nm is the largest,which is 5.759 and 7.03 kcal·mol^-1(1 cal=4.184 J),respectively.Activated carbon with pore size of 0.46 nm has the best N2 and CH4 adsorption selectivity,while its diffusion selectivity is not obvious.展开更多
The enrichment of low concentration coalbed methane using adsorption process with activated carbon adsorbent was studied in this work.Adsorption isotherms of methane,nitrogen and carbon dioxide on activated carbon wer...The enrichment of low concentration coalbed methane using adsorption process with activated carbon adsorbent was studied in this work.Adsorption isotherms of methane,nitrogen and carbon dioxide on activated carbon were measured by volumetric method,meanwhile a series of breakthrough tests with single component,binary components and three components feed mixture has been performed for exploring dynamic adsorption behaviors.Moreover,a rigorous mathematical model of adsorption bed containing mass,energy,and momentum conservation equation as well as dualsite Langmuir model with the Linear driving force model for gassolid phase mass transfer has been proposed for numerical modeling and simulation of fixed bed breakthrough process and vacuum pressure swing adsorption process.Furthermore,the lumped mass transfer coefficient of methane,nitrogen and carbon dioxide on activated carbon adsorbent has been determined to be 0.3 s^(-1),1.0 s^(-1) and 0.06 s^(-1) by fitting the breakthrough curves using numerical calculation.Additionally,a six bed VPSA process with twelve step cycle sequence has been proposed and investigated for low concentration coalbed methane enrichment.Results demonstrated that the methane molar fraction in feed mixture ranged from 10%to 50%could be enriched to 32.15%to 88.75%methane in heavy product gas with a methane recovery higher than 83%under the adsorption pressure of 3 bar(1 bar=105 Pa)and desorption pressure of 0.1 bar.Energy consumption of this VPSA process was varied from 0.165 k·W·h·m^(-3) CH_(4)to 0.649 k·W·h·m^(-3) CH_(4).Finally,a dualstage VPSA process has been successfully developed to upgrade a low concentration coalbed methane containing 20%methane to a target product gas with methane purity higher than 90%,meanwhile the total methane recovery was up to 98.71%with a total energy consumption of 0.504 k·W·h·m^(-3)CH_(4).展开更多
基金part of the project supported by the Shanxi Coal-bed Methane Joint Research Fund(No.2015012004)。
文摘In this paper,a model of activated carbon was established by molecular simulation and the separation performance of N2 and CH4 on activated carbon was studied.In order to evaluate the adsorption selectivity and diffusion selectivity of N2 and CH4,Grand Canonical Monte Carlo and molecular dynamic methods were used to obtain equilibrium adsorption isotherms and mean square displacements of N2 and CH4 on activated carbon with different pore sizes.Research results showed that the difference in adsorption isosteric heat of N2 and CH4 at the pore size of 0.46 nm is the largest,which is 5.759 and 7.03 kcal·mol^-1(1 cal=4.184 J),respectively.Activated carbon with pore size of 0.46 nm has the best N2 and CH4 adsorption selectivity,while its diffusion selectivity is not obvious.
文摘The enrichment of low concentration coalbed methane using adsorption process with activated carbon adsorbent was studied in this work.Adsorption isotherms of methane,nitrogen and carbon dioxide on activated carbon were measured by volumetric method,meanwhile a series of breakthrough tests with single component,binary components and three components feed mixture has been performed for exploring dynamic adsorption behaviors.Moreover,a rigorous mathematical model of adsorption bed containing mass,energy,and momentum conservation equation as well as dualsite Langmuir model with the Linear driving force model for gassolid phase mass transfer has been proposed for numerical modeling and simulation of fixed bed breakthrough process and vacuum pressure swing adsorption process.Furthermore,the lumped mass transfer coefficient of methane,nitrogen and carbon dioxide on activated carbon adsorbent has been determined to be 0.3 s^(-1),1.0 s^(-1) and 0.06 s^(-1) by fitting the breakthrough curves using numerical calculation.Additionally,a six bed VPSA process with twelve step cycle sequence has been proposed and investigated for low concentration coalbed methane enrichment.Results demonstrated that the methane molar fraction in feed mixture ranged from 10%to 50%could be enriched to 32.15%to 88.75%methane in heavy product gas with a methane recovery higher than 83%under the adsorption pressure of 3 bar(1 bar=105 Pa)and desorption pressure of 0.1 bar.Energy consumption of this VPSA process was varied from 0.165 k·W·h·m^(-3) CH_(4)to 0.649 k·W·h·m^(-3) CH_(4).Finally,a dualstage VPSA process has been successfully developed to upgrade a low concentration coalbed methane containing 20%methane to a target product gas with methane purity higher than 90%,meanwhile the total methane recovery was up to 98.71%with a total energy consumption of 0.504 k·W·h·m^(-3)CH_(4).