Terahertz(THz) and millimeter Wave(mmWave) have been considered as potential frequency bands for 6G cellular systems to meet the need of ultra-high data rates. However, indoor communications could be blocked in THz/mm...Terahertz(THz) and millimeter Wave(mmWave) have been considered as potential frequency bands for 6G cellular systems to meet the need of ultra-high data rates. However, indoor communications could be blocked in THz/mmW cellular systems due to the high free-space propagation loss. Deploying a large number of small base stations indoors has been considered as a promising solution for solving indoor coverage problems. However, base station dense deployment leads to a significant increase in system energy consumption. In this paper, we develop a novel ultra-efficient energy-saving mechanism with the aim of reducing energy consumption in 6G distributed indoor base station scenarios. Unlike the existing relevant protocol framework of 3GPP, which operates the cellular system based on constant system signaling messages(including cell ID, cell reselection information, etc.), the proposed mechanism eliminates the need for system messages. The intuition comes from the observation that the probability of having no users within the coverage area of an indoor base station is high, hence continuously sending system messages to guarantee the quality of service is unnecessary in indoor scenarios. Specifically, we design a dedicated beacon signal to detect whether there are users in the coverage area of the base station and switch off the main communication module when there are no active users for energy saving. The beacon frame structure is carefully designed based on the existing 3GPP specifications with minimal protocol modifications, and the protocol parameters involved are optimized. Simulation results show that the proposed mechanism can reduce the system energy from the order of tens of watts to the order of hundreds of milliwatts. Compared to traditional energy-saving schemes, the proposed mechanism achieves an average energy-saving gain of 58%, with a peak energy-saving gain of 90%.展开更多
Objective:To explore symptom experiences and self-coping patterns during the early and late stages of chemotherapy in these patients to provide a basis for developing targeted symptom management strategies.Methods:A t...Objective:To explore symptom experiences and self-coping patterns during the early and late stages of chemotherapy in these patients to provide a basis for developing targeted symptom management strategies.Methods:A total of 27 patients with pancreatic cancer undergoing chemotherapy at two medical institutions were recruited between November 2023 and August 2024.Semi-structured interviews were conducted in person or over the phone.Data were analyzed using traditional content and thematic analyses.Results:Three themes were identified:symptom experience,self-coping patterns,and existing obstacles.During the early stages of chemotherapy,patients reported a higher frequency of unpleasant symptoms and recognized these symptoms earlier in the treatment course.Patients in the early stages primarily relied on external support to cope with symptoms,while those in the later stages adopted self-care strategies.Several challenges related to unpleasant symptoms were observed,which appeared to correlate with the self-coping patterns employed.Conclusion:Patients with pancreatic cancer undergoing chemotherapy experience a complex and diverse range of symptoms,with varying coping patterns at different stages of treatment.Symptom management during chemotherapy presents significant challenges.Healthcare providers should improve the ongoing monitoring of symptoms post-chemotherapy.By linking patients’symptom experiences and self-coping patterns at different stages of chemotherapy to their specific challenges,personalized symptom management strategies can be developed to enhance care quality.展开更多
Non-small cell lung cancer(NSCLC)accounts for the majority of lung cancer cases and remains the leading cause of cancer-related mortality worldwide.Firstly,this review explores the limitations of conventional therapie...Non-small cell lung cancer(NSCLC)accounts for the majority of lung cancer cases and remains the leading cause of cancer-related mortality worldwide.Firstly,this review explores the limitations of conventional therapies,chemotherapy,radiotherapy,and surgery,focusing on the development of drug resistance and significant toxicity that often hinder their efficacy.Thereafter,advancements in targeted therapies,such as immune checkpoint inhibitors(ICIs)and tyrosine kinase inhibitors(TKIs),are discussed,highlighting their impact on improving outcomes for patients with specific genetic mutations,including c-ros oncogene 1 receptor tyrosine kinase(ROS1),anaplastic lymphoma kinase(ALK),and epidermal growth factor receptor(EGFR).Additionally,the emergence of novel immunotherapies and phytochemicals is examined,emphasizing their potential to overcome therapeutic resistance,particularly in advanced-stage diseases.The review also delves into the role of next-generation sequencing(NGS)in enabling personalized treatment approaches and explores the clinical potential of innovative agents,such as bispecific T-cell engagers(BiTEs)and antibody-drug conjugates(ADCs).Finally,we address the socioeconomic barriers that limit the accessibility of these therapies in low-resource settings and propose future research directions aimed at improving the long-term efficacy and accessibility of these treatments.展开更多
The iron content is one of the most critical parameters affecting the microstructure and mechanical properties of recycled aluminum alloy.This study aimed to compare the microstructure and tensile properties of alloys...The iron content is one of the most critical parameters affecting the microstructure and mechanical properties of recycled aluminum alloy.This study aimed to compare the microstructure and tensile properties of alloys with varying iron content to ascertain the optimal iron content for formulating a recycled Al-Si-Mg aluminum alloy.Additionally,the effects of aging temperature and aging time on the microstructure and mechanical properties of recycled aluminum alloy were investigated.With increasing aging temperature and time,both tensile strength and yield strength are improved,while elongation is decreased.Specifically,when subject to a heat treatment consisting of a solution treatment at 535℃for 5 h followed by an aging treatment at 170℃for5.5 h,the newly designed recycled aluminum alloy achieves a tensile strength of 291 MPa and a yield strength of 238 MPa.These findings hold significant implications for the further development and broader application of recycled aluminum alloys.展开更多
Multi-agent systems(MASs)are typically composed of multiple smart entities with independent sensing,communication,computing,and decision-making capabilities.Nowadays,MASs have a wide range of applications in smart gri...Multi-agent systems(MASs)are typically composed of multiple smart entities with independent sensing,communication,computing,and decision-making capabilities.Nowadays,MASs have a wide range of applications in smart grids,smart manufacturing,sensor networks,and intelligent transportation systems.Control of the MASs are often coordinated through information interaction among agents,which is one of the most important factors affecting coordination and cooperation performance.However,unexpected physical faults and cyber attacks on a single agent may spread to other agents via information interaction very quickly,and thus could lead to severe degradation of the whole system performance and even destruction of MASs.This paper is concerned with the safety/security analysis and synthesis of MASs arising from physical faults and cyber attacks,and our goal is to present a comprehensive survey on recent results on fault estimation,detection,diagnosis and fault-tolerant control of MASs,and cyber attack detection and secure control of MASs subject to two typical cyber attacks.Finally,the paper concludes with some potential future research topics on the security issues of MASs.展开更多
Objective: Although a new matrix formulation fentanyl has been used throughout the world for cancer pain management, few data about its efficacy and clinical outcomes associated with its use in Chinese patients have b...Objective: Although a new matrix formulation fentanyl has been used throughout the world for cancer pain management, few data about its efficacy and clinical outcomes associated with its use in Chinese patients have been obtained. This study aimed to assess the efficacy and safety of the new system in Chinese patients with moderate to severe cancer pain. Methods: A total of 474 patients with moderate to severe cancer pain were enrolled in this study and were treated with the new transdermal fentanyl matrix patch (TDF) up to 2 weeks. All the patients were asked to record pain intensity, side effects, quality of life (QOL), adherence and global satisfaction. The initial dose of fentanyl was 25 ?g/h titrated with opioid or according to National Comprehensive Cancer Network (NCCN) guidelines. Transdermal fentanyl was changed every three days. Results: After 2 weeks. The mean pain intensity of the 459 evaluated patients decreased significantly from 5.63?1.26 to 2.03?1.46 (P<0.0001). The total remission rate was 91.29%, of which moderate remission rate 53.16%, obvious remission rate 25.49% and complete remission rate 12.64%. The rate of adverse events was 33.75%, 18.78% of which were moderate and 3.80% were severe. The most frequent adverse events were constipation and nausea. No fatal events were observed. The quality of life was remarkably improved after the treatment (P<0.0001). Conclusion: The new TDF is effective and safe in treating patients with moderate to severe cancer pain, and can significantly improve the quality of life.展开更多
Objective: In our previous work, we prepared a type of chitosan hydrogel with excellent biocompatibility. In this study, tissue-engineered cartilage constructed with this chitosan hydrogel and costal chondrocytes was...Objective: In our previous work, we prepared a type of chitosan hydrogel with excellent biocompatibility. In this study, tissue-engineered cartilage constructed with this chitosan hydrogel and costal chondrocytes was used to repair the articular cartilage defects. Methods: Chitosan hydrogels were prepared with a crosslinker formed by combining 1,6-diisocyanatohexane and polyethylene glycol. Chitosan hydrogel scaffold was seeded with rabbit chondrocytes that had been cultured for one week in vitro to form the preliminary tissue-engineered cartilage. This preliminary tissue-engineered cartilage was then transplanted into the defective rabbit articular cartilage. There were three treatment groups: the experimental group received preliminary tissue-engineered cartilage; the blank group received pure chitosan hydrogels; and, the control group had received no implantation. The knee joints were harvested at predetermined time. The repaired cartilage was analyzed through gross morphology, histologically and immunohistochemically. The repairs were scored according to the international cartilage repair society (ICRS) standard. Results: The gross morphology results suggested that the defects were repaired completely in the experimental group after twelve weeks. The regenerated tissue connected closely with subchondral bone and the boundary with normal tissue was fuzzy. The cartilage lacuna in the regenerated tissue was similar to normal cartilage lacuna. The results of ICRS gross and histological grading showed that there were significant differences among the three groups (P〈0.05). Conclusions: Chondrocytes implanted in the scaffold can adhere, proliferate, and secrete extracellular matrix. The novel tissue-engineered cartilage constructed in our research can completely repair the structure of damaged articular cartilage.展开更多
The catalytic performance is highly related to the catalyst structure.Herein,a series of Ni nanoparticles supported on Y_(2)O_(3) with different morphologies were successfully synthesized via hydrothermal process scre...The catalytic performance is highly related to the catalyst structure.Herein,a series of Ni nanoparticles supported on Y_(2)O_(3) with different morphologies were successfully synthesized via hydrothermal process screening different pH environments.These Ni/Y_(2)O_(3)catalysts were applied to efficiently produce CO_(x)-free H2through ammonia decomposition.We identify a significant impact of Y_(2)O_(3)supports on nickel nanoclusters sizes and dispersion.The experimental results show that Ni/Y11 catalyst achieves 100% ammonia decomposition conversion under a gas hour space velocity(GHSV) of 12,000 ml·h^(-1)·gcat^(-1) and temperature of 650℃.Such a high level of activity over Ni/Y11 catalyst was attributed to a large specific surface area,appropriate alkalinity,and small Ni nanoparticles diameter with high dispersion.展开更多
Objective: To construct a recombinant adenovirus vector-carrying human growth and differentiation factor-5 (GDF-5) gene, investigate the biological effects of adenovirus-mediated GDF-5 (Ad-GDF-5) on extracellular...Objective: To construct a recombinant adenovirus vector-carrying human growth and differentiation factor-5 (GDF-5) gene, investigate the biological effects of adenovirus-mediated GDF-5 (Ad-GDF-5) on extracellular matrix (ECM) expression in human degenerative disc nucleus pulposus (NP) cells, and explore a candidate gene therapy method for intervertebral disc degeneration (IDD). Methods: Human NP cells of a degenerative disc were isolated, cultured, and infected with Ad-GDF-5 using the AdEasy-1 adenovirus vector system. On Days 3, 7, 14, and 21, the contents of the sulfated glycosaminoglycan (sGAG), deoxyribonucleic acid (DNA) and hydroxyproline (Hyp), synthesis of proteoglycan and collagen II, gene expression of collagen II and aggrecan, and NP cell proliferation were assessed. Results: The adenovirus was an effective vehicle for gene delivery with prolonged expression of GDF-5. Biochemical analysis revealed increased sGAG and Hyp contents in human NP cells infected by Ad-GDF-5 whereas there was no conspicuous change in basal medium (BM) or Ad-green fluorescent protein (GFP) groups. Only cells in the Ad-GDF-5 group promoted the production of ECM, as demonstrated by the secretion of proteoglycan and up-regulation of collagen II and aggrecan at both protein and mRNA levels. The NP cell proliferation was significantly promoted. Conclusions: The data suggest that Ad-GDF-5 gene therapy is a potential treatment for IDD, which restores the functions of degenerative intervertebral disc through enhancing the ECM production of human NP ceils.展开更多
BACKGROUND Acquired pure red cell aplasia(aPRCA)related to human parvovirus B19(HPV B19)is rarely reported in simultaneous pancreas-kidney transplantation(SPKT)recipients;there has yet to be a case report of early pos...BACKGROUND Acquired pure red cell aplasia(aPRCA)related to human parvovirus B19(HPV B19)is rarely reported in simultaneous pancreas-kidney transplantation(SPKT)recipients;there has yet to be a case report of early postoperative infection.In this current study,we report the case of a Chinese patient who experienced the disease in the early postoperative period.CASE SUMMARY A 63-year-old man,with type 2 diabetes and end-stage renal disease,received a brain dead donor-derived SPKT.Immunosuppression treatment consisted of tacrolimus,prednisone,enteric-coated mycophenolate sodium(EC-MPS),and thymoglobulin combined with methylprednisolone as induction.The hemoglobin(Hb)level declined due to melena at postoperative day(POD)3,erythropoietinresistant anemia persisted,and reticulocytopenia was diagnosed at POD 20.The bone marrow aspirate showed decreased erythropoiesis and the presence of giant pronormoblasts at POD 43.Metagenomic next-generation sequencing(mNGS)of a blood sample identified HPV B19 infection at POD 66.EC-MPS was withdrawn;three cycles of intravenous immunoglobulin(IVIG)infusion therapy were administered;and tacrolimus was switched to cyclosporine.The HPV B19-associated aPRCA resolved completely and did not relapse within the 1-year follow-up period.The diminution in mNGS reads was correlated with Hb and reticulocyte count improvements.CONCLUSION HPV B19-associated aPRCA can occur at an early period after SPKT.An effective therapy regimen includes IVIG infusion and adjustment of the immunosuppressive regimen.Moreover,mNGS can be used for the diagnosis and to reflect disease progression.展开更多
The content of noble metal loading and the reduction process of the catalysts are important factors influence the economic indicator and catalytic performance for industrial catalysis. In the present work, Pd/CeO2NT (...The content of noble metal loading and the reduction process of the catalysts are important factors influence the economic indicator and catalytic performance for industrial catalysis. In the present work, Pd/CeO2NT (Pd supported on the CeO2 nanotubes) catalysts are prepared with the hydrothermal synthesized CeO2NT and glutathione (GSH) reduced Pd nanoparticles via impregnation. The content of Pd loading as well as the catalysts reduction temperature are optimized to the CO oxidation reduction. Our results show that the best Pd loading is 1.5%Pd/CeO2NT. The catalysts reduced at 350 ℃ for 2 h prior to catalytic reaction perform the best toward CO oxidation, which reaches completely CO conversion at 70 ℃. The XRD, Raman, H2-TPR, TEM, BET and XPS characterization reveal that the excellent catalytic performance of 350 °C 1.5%Pd/CeO2NT sample can be attributed the high Pd^0 species and oxygen vacancy in the sample, which are important factors influence the activity of the catalysts.展开更多
This article addresses the leader-following output consensus problem of heterogeneous linear multi-agent systems with unknown agent parameters under directed graphs.The dynamics of followers are allowed to be non-mini...This article addresses the leader-following output consensus problem of heterogeneous linear multi-agent systems with unknown agent parameters under directed graphs.The dynamics of followers are allowed to be non-minimum phase with unknown arbitrary individual relative degrees.This is contrary to many existing works on distributed adaptive control schemes where agent dynamics are required to be minimum phase and often of the same relative degree.A distributed adaptive pole placement control scheme is developed,which consists of a distributed observer and an adaptive pole placement control law.It is shown that under the proposed distributed adaptive control scheme,all signals in the closed-loop system are bounded and the outputs of all the followers track the output of the leader asymptotically.The effectiveness of the proposed scheme is demonstrated by one practical example and one numerical example.展开更多
In this paper, a distributed control scheme has been developed for consensus of single integrator multi-agent systems with directed fixed communication topology for arbitrarily large constant, time-varying or distribu...In this paper, a distributed control scheme has been developed for consensus of single integrator multi-agent systems with directed fixed communication topology for arbitrarily large constant, time-varying or distributed communication delays. It is proved that the closed loop control system can reach consensus with an exponential convergence rate if and only if the topology is quasi-strongly connected. Simulation results are also provided to demonstrate the effectiveness of the proposed controller.展开更多
Formic acid (FA), which can be produced via CO_(2) reduction and biomass conversion, has received extensive interest as a convenient and safe hydrogen carrier due to its wide range of sources, renewable, high hydrogen...Formic acid (FA), which can be produced via CO_(2) reduction and biomass conversion, has received extensive interest as a convenient and safe hydrogen carrier due to its wide range of sources, renewable, high hydrogen content (4.4 wt%), and convenient storage/transportation. Designing highly efficient catalysts is the main challenge to realize the hydrogen production from FA. In this work, well-dispersed and electron-rich PdIr alloy nanoparticles with a size of 1.8 nm are confined in amino-modified 3D mesoporous silica KIT-6 and applied as a highly efficient catalyst for robust hydrogen production from FA at ambient temperature. Small PdIr alloy nanoparticles confined by amino-modified KIT-6 (PdIr/KIT-6-NH_(2)) lead to better catalytic activity compared to that of Pd/KIT-6-NH_(2) and PdIr confined by bare KIT-6, achieving a high turnover frequency (TOF) value of 3533 h-1 at ambient temperature (303 K), 100% H_(2) selectivity and conversion toward the dehydrogenation of FA, which is comparable to the best heterogeneous catalysts ever reported. The high catalytic activity of PdIr/KIT-6-NH_(2) can be attributed to the synergistic effect between Pd and Ir, strong interaction between PdIr and KIT-6-NH_(2), as well as the amino-groups of KIT-6-NH_(2) which can act as a proton scavenger to promote the breaking of O-H bond of formic acid.展开更多
Ce–Zr solid solution(CexZr1-xO2,CZO)was prepared by the citric acid sol–gel method.The CZO was then used as a support for Pd/CZO catalysts for the oxidative carbonylation of phenol to diphenyl carbonate.The Pd/CZO c...Ce–Zr solid solution(CexZr1-xO2,CZO)was prepared by the citric acid sol–gel method.The CZO was then used as a support for Pd/CZO catalysts for the oxidative carbonylation of phenol to diphenyl carbonate.The Pd/CZO catalyst showed enhanced activity and diphenyl carbonate selectivity compared with the Pd/CeO2 catalyst.The catalytic performance of Pd/CZO was influenced by the calcination temperature of the CZO support.X-ray diffraction,scanning electron microscopy,N2 adsorption–desorption measurements,X-ray photoelectron spectroscopy and H2 temperature-programmed reduction measurements were used to investigate the effects of Zr doping and calcination temperature.The catalytic performance of Pd/CZO and Pd/CeO2 for the oxidative carbonylation of phenol was affected by several factors,including the specific surface area,Ce^3+and/or oxygen vacancy content,oxygen species type and Pd(II)content of the catalyst.All these properties were influenced by Zr doping and the calcination temperature of the CZO support.展开更多
基金supported by the National Natural Science Foundation of China under Grant No. 62201121the Fundamental Research Funds for Central Universities under Grant No. ZYGX2024XJ070.
文摘Terahertz(THz) and millimeter Wave(mmWave) have been considered as potential frequency bands for 6G cellular systems to meet the need of ultra-high data rates. However, indoor communications could be blocked in THz/mmW cellular systems due to the high free-space propagation loss. Deploying a large number of small base stations indoors has been considered as a promising solution for solving indoor coverage problems. However, base station dense deployment leads to a significant increase in system energy consumption. In this paper, we develop a novel ultra-efficient energy-saving mechanism with the aim of reducing energy consumption in 6G distributed indoor base station scenarios. Unlike the existing relevant protocol framework of 3GPP, which operates the cellular system based on constant system signaling messages(including cell ID, cell reselection information, etc.), the proposed mechanism eliminates the need for system messages. The intuition comes from the observation that the probability of having no users within the coverage area of an indoor base station is high, hence continuously sending system messages to guarantee the quality of service is unnecessary in indoor scenarios. Specifically, we design a dedicated beacon signal to detect whether there are users in the coverage area of the base station and switch off the main communication module when there are no active users for energy saving. The beacon frame structure is carefully designed based on the existing 3GPP specifications with minimal protocol modifications, and the protocol parameters involved are optimized. Simulation results show that the proposed mechanism can reduce the system energy from the order of tens of watts to the order of hundreds of milliwatts. Compared to traditional energy-saving schemes, the proposed mechanism achieves an average energy-saving gain of 58%, with a peak energy-saving gain of 90%.
基金supported by the State Key Laboratory of Ultrasonic Medical Engineering/the Chongqing Science and Technology Bureau(Project No.2022KFKT7011)the Postdoctoral Fellowship Program of CPSF(GZC20233357)+1 种基金the Health Commission of Sichuan Province Medical Science and Technology Program(24QNMP007)the Medical Research Program of Health Commission of Chengdu(2023535).
文摘Objective:To explore symptom experiences and self-coping patterns during the early and late stages of chemotherapy in these patients to provide a basis for developing targeted symptom management strategies.Methods:A total of 27 patients with pancreatic cancer undergoing chemotherapy at two medical institutions were recruited between November 2023 and August 2024.Semi-structured interviews were conducted in person or over the phone.Data were analyzed using traditional content and thematic analyses.Results:Three themes were identified:symptom experience,self-coping patterns,and existing obstacles.During the early stages of chemotherapy,patients reported a higher frequency of unpleasant symptoms and recognized these symptoms earlier in the treatment course.Patients in the early stages primarily relied on external support to cope with symptoms,while those in the later stages adopted self-care strategies.Several challenges related to unpleasant symptoms were observed,which appeared to correlate with the self-coping patterns employed.Conclusion:Patients with pancreatic cancer undergoing chemotherapy experience a complex and diverse range of symptoms,with varying coping patterns at different stages of treatment.Symptom management during chemotherapy presents significant challenges.Healthcare providers should improve the ongoing monitoring of symptoms post-chemotherapy.By linking patients’symptom experiences and self-coping patterns at different stages of chemotherapy to their specific challenges,personalized symptom management strategies can be developed to enhance care quality.
文摘Non-small cell lung cancer(NSCLC)accounts for the majority of lung cancer cases and remains the leading cause of cancer-related mortality worldwide.Firstly,this review explores the limitations of conventional therapies,chemotherapy,radiotherapy,and surgery,focusing on the development of drug resistance and significant toxicity that often hinder their efficacy.Thereafter,advancements in targeted therapies,such as immune checkpoint inhibitors(ICIs)and tyrosine kinase inhibitors(TKIs),are discussed,highlighting their impact on improving outcomes for patients with specific genetic mutations,including c-ros oncogene 1 receptor tyrosine kinase(ROS1),anaplastic lymphoma kinase(ALK),and epidermal growth factor receptor(EGFR).Additionally,the emergence of novel immunotherapies and phytochemicals is examined,emphasizing their potential to overcome therapeutic resistance,particularly in advanced-stage diseases.The review also delves into the role of next-generation sequencing(NGS)in enabling personalized treatment approaches and explores the clinical potential of innovative agents,such as bispecific T-cell engagers(BiTEs)and antibody-drug conjugates(ADCs).Finally,we address the socioeconomic barriers that limit the accessibility of these therapies in low-resource settings and propose future research directions aimed at improving the long-term efficacy and accessibility of these treatments.
基金support from funded project:Key Industrial R&D Projects of Chongqing Technology Innovation and Application Demonstration (cstc2020jscx-dxwtBX0023)。
文摘The iron content is one of the most critical parameters affecting the microstructure and mechanical properties of recycled aluminum alloy.This study aimed to compare the microstructure and tensile properties of alloys with varying iron content to ascertain the optimal iron content for formulating a recycled Al-Si-Mg aluminum alloy.Additionally,the effects of aging temperature and aging time on the microstructure and mechanical properties of recycled aluminum alloy were investigated.With increasing aging temperature and time,both tensile strength and yield strength are improved,while elongation is decreased.Specifically,when subject to a heat treatment consisting of a solution treatment at 535℃for 5 h followed by an aging treatment at 170℃for5.5 h,the newly designed recycled aluminum alloy achieves a tensile strength of 291 MPa and a yield strength of 238 MPa.These findings hold significant implications for the further development and broader application of recycled aluminum alloys.
基金partially supported by the National Natural Science Foundation of China(61873237)the Fundamental Research Funds for the Central Universities+2 种基金the Fundamental Research Funds for the Provincial Universities of Zhejiang(RF-A2019003)the Research Grants Council of the Hong Kong Special Administrative Region of China(City U/11204315)the Hong Kong Scholars Program(XJ2016030)。
文摘Multi-agent systems(MASs)are typically composed of multiple smart entities with independent sensing,communication,computing,and decision-making capabilities.Nowadays,MASs have a wide range of applications in smart grids,smart manufacturing,sensor networks,and intelligent transportation systems.Control of the MASs are often coordinated through information interaction among agents,which is one of the most important factors affecting coordination and cooperation performance.However,unexpected physical faults and cyber attacks on a single agent may spread to other agents via information interaction very quickly,and thus could lead to severe degradation of the whole system performance and even destruction of MASs.This paper is concerned with the safety/security analysis and synthesis of MASs arising from physical faults and cyber attacks,and our goal is to present a comprehensive survey on recent results on fault estimation,detection,diagnosis and fault-tolerant control of MASs,and cyber attack detection and secure control of MASs subject to two typical cyber attacks.Finally,the paper concludes with some potential future research topics on the security issues of MASs.
文摘Objective: Although a new matrix formulation fentanyl has been used throughout the world for cancer pain management, few data about its efficacy and clinical outcomes associated with its use in Chinese patients have been obtained. This study aimed to assess the efficacy and safety of the new system in Chinese patients with moderate to severe cancer pain. Methods: A total of 474 patients with moderate to severe cancer pain were enrolled in this study and were treated with the new transdermal fentanyl matrix patch (TDF) up to 2 weeks. All the patients were asked to record pain intensity, side effects, quality of life (QOL), adherence and global satisfaction. The initial dose of fentanyl was 25 ?g/h titrated with opioid or according to National Comprehensive Cancer Network (NCCN) guidelines. Transdermal fentanyl was changed every three days. Results: After 2 weeks. The mean pain intensity of the 459 evaluated patients decreased significantly from 5.63?1.26 to 2.03?1.46 (P<0.0001). The total remission rate was 91.29%, of which moderate remission rate 53.16%, obvious remission rate 25.49% and complete remission rate 12.64%. The rate of adverse events was 33.75%, 18.78% of which were moderate and 3.80% were severe. The most frequent adverse events were constipation and nausea. No fatal events were observed. The quality of life was remarkably improved after the treatment (P<0.0001). Conclusion: The new TDF is effective and safe in treating patients with moderate to severe cancer pain, and can significantly improve the quality of life.
基金supported by the National Natural Science Foundation of China(Nos.81171472,81201407,and 81071270)the Innovation Team Project of Sichuan Provincial Education Department(No.13TD0030)+1 种基金the Major Transformation Cultivation Project of Sichuan Provincial Education Department(No.15CZ0021)the Science and Technology Project of Nanchong City(No.14A0021),China
文摘Objective: In our previous work, we prepared a type of chitosan hydrogel with excellent biocompatibility. In this study, tissue-engineered cartilage constructed with this chitosan hydrogel and costal chondrocytes was used to repair the articular cartilage defects. Methods: Chitosan hydrogels were prepared with a crosslinker formed by combining 1,6-diisocyanatohexane and polyethylene glycol. Chitosan hydrogel scaffold was seeded with rabbit chondrocytes that had been cultured for one week in vitro to form the preliminary tissue-engineered cartilage. This preliminary tissue-engineered cartilage was then transplanted into the defective rabbit articular cartilage. There were three treatment groups: the experimental group received preliminary tissue-engineered cartilage; the blank group received pure chitosan hydrogels; and, the control group had received no implantation. The knee joints were harvested at predetermined time. The repaired cartilage was analyzed through gross morphology, histologically and immunohistochemically. The repairs were scored according to the international cartilage repair society (ICRS) standard. Results: The gross morphology results suggested that the defects were repaired completely in the experimental group after twelve weeks. The regenerated tissue connected closely with subchondral bone and the boundary with normal tissue was fuzzy. The cartilage lacuna in the regenerated tissue was similar to normal cartilage lacuna. The results of ICRS gross and histological grading showed that there were significant differences among the three groups (P〈0.05). Conclusions: Chondrocytes implanted in the scaffold can adhere, proliferate, and secrete extracellular matrix. The novel tissue-engineered cartilage constructed in our research can completely repair the structure of damaged articular cartilage.
基金financially supported by the National Natural Science Foundation of China (Nos.21868016, 21763018,22005296 and 21875096)the Key Laboratory for Environment and Energy Catalysis of Jiangxi Province (No. 20181BCD40004)+1 种基金the Natural Science Foundation of Jiangxi Province (No.20181BAB203016)the Graduate Students Innovation Special Foundation of Jiangxi Province (No.YC2021-B014)。
文摘The catalytic performance is highly related to the catalyst structure.Herein,a series of Ni nanoparticles supported on Y_(2)O_(3) with different morphologies were successfully synthesized via hydrothermal process screening different pH environments.These Ni/Y_(2)O_(3)catalysts were applied to efficiently produce CO_(x)-free H2through ammonia decomposition.We identify a significant impact of Y_(2)O_(3)supports on nickel nanoclusters sizes and dispersion.The experimental results show that Ni/Y11 catalyst achieves 100% ammonia decomposition conversion under a gas hour space velocity(GHSV) of 12,000 ml·h^(-1)·gcat^(-1) and temperature of 650℃.Such a high level of activity over Ni/Y11 catalyst was attributed to a large specific surface area,appropriate alkalinity,and small Ni nanoparticles diameter with high dispersion.
基金Project supported by the National Natural Science Foundation of China(Nos.81171472 and 81201407)the Innovation Team Project of Sichuan Provincial Education Department(No.13TD0030)+1 种基金the Major Transformation Cultivation Project of Sichuan Provincial Education Department(No.15CZ0021)the Science and Technology Project of Nanchong City(No.14A0021),China
文摘Objective: To construct a recombinant adenovirus vector-carrying human growth and differentiation factor-5 (GDF-5) gene, investigate the biological effects of adenovirus-mediated GDF-5 (Ad-GDF-5) on extracellular matrix (ECM) expression in human degenerative disc nucleus pulposus (NP) cells, and explore a candidate gene therapy method for intervertebral disc degeneration (IDD). Methods: Human NP cells of a degenerative disc were isolated, cultured, and infected with Ad-GDF-5 using the AdEasy-1 adenovirus vector system. On Days 3, 7, 14, and 21, the contents of the sulfated glycosaminoglycan (sGAG), deoxyribonucleic acid (DNA) and hydroxyproline (Hyp), synthesis of proteoglycan and collagen II, gene expression of collagen II and aggrecan, and NP cell proliferation were assessed. Results: The adenovirus was an effective vehicle for gene delivery with prolonged expression of GDF-5. Biochemical analysis revealed increased sGAG and Hyp contents in human NP cells infected by Ad-GDF-5 whereas there was no conspicuous change in basal medium (BM) or Ad-green fluorescent protein (GFP) groups. Only cells in the Ad-GDF-5 group promoted the production of ECM, as demonstrated by the secretion of proteoglycan and up-regulation of collagen II and aggrecan at both protein and mRNA levels. The NP cell proliferation was significantly promoted. Conclusions: The data suggest that Ad-GDF-5 gene therapy is a potential treatment for IDD, which restores the functions of degenerative intervertebral disc through enhancing the ECM production of human NP ceils.
基金National Natural Science Foundation of,No.81970654.
文摘BACKGROUND Acquired pure red cell aplasia(aPRCA)related to human parvovirus B19(HPV B19)is rarely reported in simultaneous pancreas-kidney transplantation(SPKT)recipients;there has yet to be a case report of early postoperative infection.In this current study,we report the case of a Chinese patient who experienced the disease in the early postoperative period.CASE SUMMARY A 63-year-old man,with type 2 diabetes and end-stage renal disease,received a brain dead donor-derived SPKT.Immunosuppression treatment consisted of tacrolimus,prednisone,enteric-coated mycophenolate sodium(EC-MPS),and thymoglobulin combined with methylprednisolone as induction.The hemoglobin(Hb)level declined due to melena at postoperative day(POD)3,erythropoietinresistant anemia persisted,and reticulocytopenia was diagnosed at POD 20.The bone marrow aspirate showed decreased erythropoiesis and the presence of giant pronormoblasts at POD 43.Metagenomic next-generation sequencing(mNGS)of a blood sample identified HPV B19 infection at POD 66.EC-MPS was withdrawn;three cycles of intravenous immunoglobulin(IVIG)infusion therapy were administered;and tacrolimus was switched to cyclosporine.The HPV B19-associated aPRCA resolved completely and did not relapse within the 1-year follow-up period.The diminution in mNGS reads was correlated with Hb and reticulocyte count improvements.CONCLUSION HPV B19-associated aPRCA can occur at an early period after SPKT.An effective therapy regimen includes IVIG infusion and adjustment of the immunosuppressive regimen.Moreover,mNGS can be used for the diagnosis and to reflect disease progression.
基金the National Natural Science Foundation of China(Nos. 21868016, 21366020 and 21875096) Natural Science Foundation of Jiangxi Province (Nos. 20181BAB203016,20122BAB203009)the Key Laboratory of Jiangxi Province for Environment and Energy Catalysis of Jiangxi Province (No. 20181BCD40004)
文摘The content of noble metal loading and the reduction process of the catalysts are important factors influence the economic indicator and catalytic performance for industrial catalysis. In the present work, Pd/CeO2NT (Pd supported on the CeO2 nanotubes) catalysts are prepared with the hydrothermal synthesized CeO2NT and glutathione (GSH) reduced Pd nanoparticles via impregnation. The content of Pd loading as well as the catalysts reduction temperature are optimized to the CO oxidation reduction. Our results show that the best Pd loading is 1.5%Pd/CeO2NT. The catalysts reduced at 350 ℃ for 2 h prior to catalytic reaction perform the best toward CO oxidation, which reaches completely CO conversion at 70 ℃. The XRD, Raman, H2-TPR, TEM, BET and XPS characterization reveal that the excellent catalytic performance of 350 °C 1.5%Pd/CeO2NT sample can be attributed the high Pd^0 species and oxygen vacancy in the sample, which are important factors influence the activity of the catalysts.
基金This work was supported by Research Grants Council of Hong Kong(CityU-11205221).
文摘This article addresses the leader-following output consensus problem of heterogeneous linear multi-agent systems with unknown agent parameters under directed graphs.The dynamics of followers are allowed to be non-minimum phase with unknown arbitrary individual relative degrees.This is contrary to many existing works on distributed adaptive control schemes where agent dynamics are required to be minimum phase and often of the same relative degree.A distributed adaptive pole placement control scheme is developed,which consists of a distributed observer and an adaptive pole placement control law.It is shown that under the proposed distributed adaptive control scheme,all signals in the closed-loop system are bounded and the outputs of all the followers track the output of the leader asymptotically.The effectiveness of the proposed scheme is demonstrated by one practical example and one numerical example.
文摘In this paper, a distributed control scheme has been developed for consensus of single integrator multi-agent systems with directed fixed communication topology for arbitrarily large constant, time-varying or distributed communication delays. It is proved that the closed loop control system can reach consensus with an exponential convergence rate if and only if the topology is quasi-strongly connected. Simulation results are also provided to demonstrate the effectiveness of the proposed controller.
基金financially supported by the National Natural Science Foundation of China (Nos. 21763012, 22162014)Scientific Research Foundation of Graduate School of Jiangxi Province(No. YC2020-B067)。
文摘Formic acid (FA), which can be produced via CO_(2) reduction and biomass conversion, has received extensive interest as a convenient and safe hydrogen carrier due to its wide range of sources, renewable, high hydrogen content (4.4 wt%), and convenient storage/transportation. Designing highly efficient catalysts is the main challenge to realize the hydrogen production from FA. In this work, well-dispersed and electron-rich PdIr alloy nanoparticles with a size of 1.8 nm are confined in amino-modified 3D mesoporous silica KIT-6 and applied as a highly efficient catalyst for robust hydrogen production from FA at ambient temperature. Small PdIr alloy nanoparticles confined by amino-modified KIT-6 (PdIr/KIT-6-NH_(2)) lead to better catalytic activity compared to that of Pd/KIT-6-NH_(2) and PdIr confined by bare KIT-6, achieving a high turnover frequency (TOF) value of 3533 h-1 at ambient temperature (303 K), 100% H_(2) selectivity and conversion toward the dehydrogenation of FA, which is comparable to the best heterogeneous catalysts ever reported. The high catalytic activity of PdIr/KIT-6-NH_(2) can be attributed to the synergistic effect between Pd and Ir, strong interaction between PdIr and KIT-6-NH_(2), as well as the amino-groups of KIT-6-NH_(2) which can act as a proton scavenger to promote the breaking of O-H bond of formic acid.
基金supported by the National Natural Science Foundation of China(21776057)the Natural Science Foundation of Tianjin City(Nos.17JCYBJC20100,18JCYBJC21500)the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Hebei Province(CL201605)。
文摘Ce–Zr solid solution(CexZr1-xO2,CZO)was prepared by the citric acid sol–gel method.The CZO was then used as a support for Pd/CZO catalysts for the oxidative carbonylation of phenol to diphenyl carbonate.The Pd/CZO catalyst showed enhanced activity and diphenyl carbonate selectivity compared with the Pd/CeO2 catalyst.The catalytic performance of Pd/CZO was influenced by the calcination temperature of the CZO support.X-ray diffraction,scanning electron microscopy,N2 adsorption–desorption measurements,X-ray photoelectron spectroscopy and H2 temperature-programmed reduction measurements were used to investigate the effects of Zr doping and calcination temperature.The catalytic performance of Pd/CZO and Pd/CeO2 for the oxidative carbonylation of phenol was affected by several factors,including the specific surface area,Ce^3+and/or oxygen vacancy content,oxygen species type and Pd(II)content of the catalyst.All these properties were influenced by Zr doping and the calcination temperature of the CZO support.