Background To compare neural damage induced by ultra-high dose rate FLASH radiotherapy(FLASH-RT)with that induced by conventional dose rate radiotherapy(CONV-RT)in healthy mice.Methods Eighty adult male C57BL/6J mice ...Background To compare neural damage induced by ultra-high dose rate FLASH radiotherapy(FLASH-RT)with that induced by conventional dose rate radiotherapy(CONV-RT)in healthy mice.Methods Eighty adult male C57BL/6J mice were divided into five groups:Sham,CONV-RT10Gy,CONV-RT20Gy,FLASH-RT10Gy,and FLASH-RT20Gy.Three days post-irradiation,morphological changes in neurons within the dentate gyrus(DG),CA1,and CA3 were observed using hematoxylin and eosin and Nissl staining.The malondialdehyde(MDA),reduced glutathione(GSH),glutathione peroxidase(GSH-PX),superoxide dismutase(SOD),catalase(CAT),and hydroxyl radical(OH^(-))levels were measured using assay kits.Quantitative reverse transcription PCR was used to assess interleukin(IL)-1β,IL-6,inducible nitric oxide synthase(iNOS),and tumor necrosis factor(TNF)-αmRNA expression levels in hippocampus.Immunofluorescence was employed to observe microglial activation in the DG.Results Compared with Sham,CONV-RT10Gy and CONV-RT20Gy exhibited disorganized neuronal arrangements and blurred nucleoli in the DG;the number of Nissl body was reduced,but FLASH-RT10Gy and FLASH-RT20Gy alleviated these abnormalities.Moreover,FLASH-RT20Gy mitigated the upregulation of MDA and downregulation of GSH,GSH-PX,SOD,CAT,and OH^(-)levels in the hippocampus of mice subjected to CONV-RT20Gy.Additionally,FLASH-RT20Gy attenuated the upregulation of IL-1β,IL-6,iNOS,and TNF-αmRNA levels in hippocampus of mice subjected to CONV-RT20Gy and diminished microglial activation in the DG.Conclusion FLASH-RT mitigate the structural and functional disruptions in hippocampal neurons induced by CONV-RT and alleviate oxidative stress and inflammation in hippocampal tissue by reducing microglial activation.展开更多
文中以硅酸四乙酯、异氰酸丙基三乙氧基硅烷、1-羟甲基-5,5-二甲基乙内酰脲等为原料,采用原位成型法在棉织物表面生长卤胺化纳米二氧化硅颗粒并对其进行氯化处理,制备了具有抗菌和疏水双重功能的棉织物。探究了卤胺化纳米二氧化硅颗粒...文中以硅酸四乙酯、异氰酸丙基三乙氧基硅烷、1-羟甲基-5,5-二甲基乙内酰脲等为原料,采用原位成型法在棉织物表面生长卤胺化纳米二氧化硅颗粒并对其进行氯化处理,制备了具有抗菌和疏水双重功能的棉织物。探究了卤胺化纳米二氧化硅颗粒合成的最佳工艺,对整理前后的棉织物的表面形貌、氯含量、氯含量稳定性、接触角和抗菌性能进行了表征分析。结果表明,合成体系中氨水为20 m L时,卤胺化二氧化硅颗粒均匀;氯化后棉织物具有良好的疏水性,接触角为131.9°;棉织物的氯含量达到0.46%,在30 min内能够完全灭活大肠杆菌和金黄色葡萄球菌。此外,还考察了整理织物的储存稳定性、再生性和力学性能。展开更多
The distribution of shear-wave velocities in the subsurface is generally used to assess the potential forseismic liquefaction and soil amplification effects and to classify seismic sites. Newly developeddistributed ac...The distribution of shear-wave velocities in the subsurface is generally used to assess the potential forseismic liquefaction and soil amplification effects and to classify seismic sites. Newly developeddistributed acoustic sensing (DAS) technology enables estimation of the shear-wave distribution as ahigh-density seismic observation system. This technology is characterized by low maintenance costs,high-resolution outputs, and real-time data transmission capabilities, albeit with the challenge ofmanaging massive data generation. Rapid and efficient interpretation of data is the key to advancingapplication of the DAS technology. In this study, field tests were carried out to record ambient noise overa short period using DAS technology, from which the surface-wave dispersion curves were extracted. Inorder to reduce the influence of directional effects on the results, an unsupervised clustering method isused to select appropriate clusters to extract the Green's function. A combination of a genetic algorithmand Monte Carlo (GA-MC) simulation is proposed to invert the subsurface velocity structure. Thestratigraphic profiles obtained by the GA-MC method are in agreement with the borehole profiles.Compared to other methods, the proposed optimization method not only improves the solution qualitybut also reduces the solution time.展开更多
Background:Chronic obstructive pulmonary disease(COPD)is a prevalent respiratory ailment that has risen to become the foremost cause of mortality globally,and statins are a widely used class of lipid-modifying drugs.D...Background:Chronic obstructive pulmonary disease(COPD)is a prevalent respiratory ailment that has risen to become the foremost cause of mortality globally,and statins are a widely used class of lipid-modifying drugs.Data from some observational studies suggest an association between statins use and COPD.Objectives:The main objective of this study was to investigate whether lipids and apolipoproteins are bidirectionally causally associated with COPD at the genetic level using a Mendelian randomization(MR)design,and to determine the potential role of circulating inflammatory proteins as mediators in this association.Methods:The publicly available Genome-Wide Association Study(GWAS)database was utilised for the purposes of the analysis.The data on high-density lipoprotein(HDL-C),low-density lipoprotein(LDL-C),triglycerides(TG),apolipoprotein A-1(ApoA1),and apolipoprotein B(ApoB)were obtained from the UK BioBank,while the COPD dataset was obtained from the FinnGen BioBank R11(number of cases:21,617,number of controls:372,627).Furthermore,data were gathered on genetic variants linked to inflammatory processes,encompassing 91 circulating inflammatory proteins(n=14,823 individuals).A two-sample MR study was conducted using these data to assess the association between HDL-C,LDL-C,TG,ApoA1,and ApoB with the risk of COPD.Furthermore,in order to investigate the potential mediating influence of inflammatory factor alterations between lipids and COPD,a two-step Mendelian randomization(MR)mediation analysis was conducted.Results:The forward MR methods identified two lipids that were found to have a causal relationship with the development of COPD.An elevated level of LDL-C and ApoB was found to be associated with a diminished risk of COPD.Furthermore,the researchers identified circulating inflammatory factors that were determined to be the causal agents in the development of COPD.Mediation analysis indicated that the inflammatory protein S100-A12 may act as a mediator between the LDL-C and COPD pathways.Conclusion:The present MR study provides genetic evidence for a causal relationship between lipids and apolipoproteins and COPD,as well as identifying the inflammatory protein S100-A12 as a potential mediator of the COPD association.The findings offer valuable insights into the mechanistic studies of statins for COPD and potential targets for disease intervention and treatment.展开更多
Dementias such as Alzheimer disease(AD)and mild cognitive impairment(MCI)lead to problems with memory,language,and daily activities resulting from damage to neurons in the brain.Given the irreversibility of this neuro...Dementias such as Alzheimer disease(AD)and mild cognitive impairment(MCI)lead to problems with memory,language,and daily activities resulting from damage to neurons in the brain.Given the irreversibility of this neuronal damage,it is crucial to find a biomarker to distinguish individuals with these diseases from healthy people.In this study,we construct a brain function network based on electroencephalography data to study changes in AD and MCI patients.Using a graph-theoretical approach,we examine connectivity features and explore their contributions to dementia recognition at edge,node,and network levels.We find that connectivity is reduced in AD and MCI patients compared with healthy controls.We also find that the edge-level features give the best performance when machine learning models are used to recognize dementia.The results of feature selection identify the top 50 ranked edge-level features constituting an optimal subset,which is mainly connected with the frontal nodes.A threshold analysis reveals that the performance of edge-level features is more sensitive to the threshold for the connection strength than that of node-and network-level features.In addition,edge-level features with a threshold of 0 provide the most effective dementia recognition.The K-nearest neighbors(KNN)machine learning model achieves the highest accuracy of 0.978 with the optimal subset when the threshold is 0.Visualization of edge-level features suggests that there are more long connections linking the frontal region with the occipital and parietal regions in AD and MCI patients compared with healthy controls.Our codes are publicly available at https://github.com/Debbie-85/eeg-connectivity.展开更多
BACKGROUND Patients undergoing interventional therapy for liver cancer experience severe psychological pain and are prone to anxiety and depression.AIM To explore factors influencing anxiety and depression symptoms in...BACKGROUND Patients undergoing interventional therapy for liver cancer experience severe psychological pain and are prone to anxiety and depression.AIM To explore factors influencing anxiety and depression symptoms in 200 patients diagnosed with primary liver cancer.METHODS Data from 200 individuals diagnosed with primary liver cancer and admitted to the authors’hospital(January 2022 to January 2024)were divided into 2 groups according to psychological status:Normal(n=100);and anxiety and depression(n=100).Through a questionnaire survey of patients and their families,single and multifactor factors of anxiety and depression in the postoperative interven-tional treatment of patients with primary liver cancer were analyzed.RESULTS Univariate analysis revealed no statistical differences between the 2 groups in terms of chronic disease,sex,liver function,Child grade,and age(P>0.05).How-ever,there were statistical differences in payment method,disease cognition,number of interventional treatments,per capita income,and educational level(P<0.05).Multivariate logistic regression analysis revealed that educational level,per capita income,disease cognition,payment method,and number of interven-tional treatments were all independent factors influencing postoperative anxiety and depression symptoms after interventional therapy in patients diagnosed with primary liver cancer,and the comparisons were statistically significant(P<0.05).CONCLUSION Analysis of associated risk factors can strengthen the clinical screening of patients with liver cancer at high risk for postoperative anxiety and depression symptoms and improve their prognosis.展开更多
Prostate cancer (PCa) is the second most common type of cancer among men worldwide and one of the leading causes of cancer-related deaths. According to data from the World Health Organization (WHO), this cancer causes...Prostate cancer (PCa) is the second most common type of cancer among men worldwide and one of the leading causes of cancer-related deaths. According to data from the World Health Organization (WHO), this cancer causes hundreds of thousands of new cases and tens of thousands of male deaths globally each year. The incidence of PCa varies across different regions and populations, generally being higher in developed countries. This disparity may be attributed to lifestyle factors and the widespread availability of screening and diagnostic technologies. Prostate-specific membrane antigen (PSMA) is a membrane-bound enzyme predominantly expressed in prostate tissue and PCa cells, with lower expression in normal tissues. This high expression makes PSMA a critical target for the diagnosis and treatment of PCa, particularly in the field of molecular imaging and radiopharmaceutical therapy. Recently, various studies have emerged on radiopharmaceuticals developed based on PSMA ligands, which can be used to specifically identify and locate PCa cells. Research on the radiomics of these novel drugs has also been updated. This article will discuss the role and limitations of PSMA PET in the diagnosis and management of PCa treatment.展开更多
Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond th...Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond the slip surface to progressive failure.Here,we aim to investigate the subsurface multiphysics of reservoir landslides under two extreme hydrologic conditions(i.e.wet and dry),particularly within sliding masses.Based on ultra-weak fiber Bragg grating(UWFBG)technology,we employ specialpurpose fiber optic sensing cables that can be implanted into boreholes as“nerves of the Earth”to collect data on soil temperature,water content,pore water pressure,and strain.The Xinpu landslide in the middle reach of the Three Gorges Reservoir Area in China was selected as a case study to establish a paradigm for in situ thermo-hydro-poro-mechanical monitoring.These UWFBG-based sensing cables were vertically buried in a 31 m-deep borehole at the foot of the landslide,with a resolution of 1 m except for the pressure sensor.We reported field measurements covering the period 2021 and 2022 and produced the spatiotemporal profiles throughout the borehole.Results show that wet years are more likely to motivate landslide motions than dry years.The annual thermally active layer of the landslide has a critical depth of roughly 9 m and might move downward in warmer years.The dynamic groundwater table is located at depths of 9e15 m,where the peaked strain undergoes a periodical response of leap and withdrawal to annual hydrometeorological cycles.These interface behaviors may support the interpretation of the contribution of reservoir regulation to slope stability,allowing us to correlate them to local damage events and potential global destabilization.This paper also offers a natural framework for interpreting thermo-hydro-poro-mechanical signatures from creeping reservoir bank slopes,which may form the basis for a landslide monitoring and early warning system.展开更多
The scarcity of wettability,insufficient active sites,and low surface area of graphite felt(GF)have long been suppressing the performance of vanadium redox flow batteries(VRFBs).Herein,an ultra-homogeneous multipledim...The scarcity of wettability,insufficient active sites,and low surface area of graphite felt(GF)have long been suppressing the performance of vanadium redox flow batteries(VRFBs).Herein,an ultra-homogeneous multipledimensioned defect,including nano-scale etching and atomic-scale N,O codoping,was used to modify GF by the molten salt system.NH_(4)Cl and KClO_(3) were added simultaneously to the system to obtain porous N/O co-doped electrode(GF/ON),where KClO_(3) was used to ultra-homogeneously etch,and O-functionalize electrode,and NH4Cl was used as N dopant,respectively.GF/ON presents better electrochemical catalysis for VO_(2)+/VO_(2)+ and V3+/V2+ reactions than only O-functionalized electrodes(GF/O)and GF.The enhanced electrochemical properties are attributed to an increase in active sites,surface area,and wettability,as well as the synergistic effect of N and O,which is also supported by the density functional theory calculations.Further,the cell using GF/ON shows higher discharge capacity,energy efficiency,and stability for cycling performance than the pristine cell at 140 mA cm^(−2) for 200 cycles.Moreover,the energy efficiency of the modified cell is increased by 9.7% from 55.2% for the pristine cell at 260 mA cm^(−2).Such an ultra-homogeneous etching with N and O co-doping through“boiling”molten salt medium provides an effective and practical application potential way to prepare superior electrodes for VRFB.展开更多
In recent years, there has been a global rise in cases of papillary thyroid carcinoma (PTC), the predominant form of thyroid cancer. Advances in molecular biology have intensified the focus on the genetic mutations as...In recent years, there has been a global rise in cases of papillary thyroid carcinoma (PTC), the predominant form of thyroid cancer. Advances in molecular biology have intensified the focus on the genetic mutations associated with this malignancy. Researchers have conducted extensive investigations into these mutations to elucidate their roles in the initiation, progression, treatment, and prognosis of PTC. This review synthesizes studies on the genetic mutations implicated in PTC, examining specific mutated genes, mechanisms of mutation, correlations with clinicopathological features, and their influence on treatment outcomes and prognosis. The objective is to provide a theoretical framework for enhancing the diagnosis, treatment, and prognostic assessment of PTC in the future.展开更多
Titanium cermets were successfully synthesized on the surface of biomedical grade titanium alloys by using sequential carburization method. The mechanical properties such as hardness, fracture toughness and plasticity...Titanium cermets were successfully synthesized on the surface of biomedical grade titanium alloys by using sequential carburization method. The mechanical properties such as hardness, fracture toughness and plasticity were measured to estimate the potential application of titanium cermets. The results show that after carburization the surface hardness of titanium cermets was 778 HV, with a significant improvement of 128% compared with that of titanium alloys. In addition, the fracture toughness of titanium cermets was 21.5 × 10^6 Pa.m^1/2, much higher than that of other ceramics. Furthermore, the analysis of the loading-unloading curve in the nanoindentation test also indicates that the plasticity of titanium cermet reached 32.1%, a relatively high value which illustrates the combination of the metal and ceramics properties. The results suggest that sequential carburization should be an efficient way to produce titanium cermets with hard surface, high toughness and plasticity.展开更多
With the intention to explore excellent magnetocaloric materials, the intermetallic compound GdPd was synthesized by arc melting and heat treatment. The microstructure, magnetic and magnetocaloric properties of the in...With the intention to explore excellent magnetocaloric materials, the intermetallic compound GdPd was synthesized by arc melting and heat treatment. The microstructure, magnetic and magnetocaloric properties of the intermetallic compound of GdPd were investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM) and the physical property measurement system(PPMS). A large reversible magnetocaloric effect is observed in GdPd accompanied by a second order magnetic phase transition from paramagnetism to ferromagnetism at ~39 K. The paramagnetic Curie temperature(θp) and the effective magnetic moment(μ(eff))are determined to be 34.7 K and 8.12 μB/Gd,respectively. The maximum entropy change(|△SM(Max)|) and the relative cooling power(RCP) under a field change of 5 T are estimated to be 20.14 J/(kg·K) and 433 J/kg, respectively. The giant reversible magnetocaloric effects(both the large△SM and the high RCP) together with the absence of thermal and field hysteresis make the GdPd compound an attractive candidate for low-temperature magnetic refrigeration.展开更多
Understanding the spatiotemporal evolution of overburden deformation during coal mining is still a challenge in engineering practice due to the limitation of monitoring techniques. Taking the Yangliu Coal Mine as an e...Understanding the spatiotemporal evolution of overburden deformation during coal mining is still a challenge in engineering practice due to the limitation of monitoring techniques. Taking the Yangliu Coal Mine as an example, a similarity model test was designed and conducted to investigate the deformation and failure mechanism of overlying rocks in this study. Distributed fiber optic sensing(DFOS), highdensity electrical resistivity tomography(HD-ERT) and close-range photogrammetry(CRP) technologies were used in the test for comprehensive analyses. The combined use of the three methods facilitates the investigation of the spatiotemporal evolution characteristics of overburden deformation, showing that the mining-induced deformation of overburden strata was a dynamic evolution process. This process was accompanied by the formation, propagation, closure and redevelopment of separation cracks.Moreover, the key rock stratum with high strength and high-quality lithology played a crucial role in the whole process of overburden deformation. There were generally three failure modes of overburden rock layers, including bending and tension, overall shearing, and shearing and sliding. Shear failure often leads to overburden falling off in blocks, which poses a serious threat to mining safety. Therefore, realtime and accurate monitoring of overburden deformation is of great significance for the safe mining of underground coal seams.展开更多
Carbon cloth modified by hydrothermal treatment in ammonia water is developed as the positive electrode with high electrochemical performance for vanadium redox flow batteries. The SEM shows that the treatment has no ...Carbon cloth modified by hydrothermal treatment in ammonia water is developed as the positive electrode with high electrochemical performance for vanadium redox flow batteries. The SEM shows that the treatment has no obvious influence on the morphology of carbon cloth. XPS measurements indicate that the nitrogenous functional groups can be introduced on the surface of carbon cloth successfully. The electrochemical performance of V(IV)/V(V) redox couple on the prepared electrode is evaluated with cyclic voltammetry and linear sweep voltammetry measurements. The N-doped carbon cloth exhibits outstanding electrochemical activity and reversibility toward V(IV)/V(V) redox couple. The rate constant of V(IV)/V(V) redox reaction on carbon cloth can increase to 2.27 x 10(-4) cm/s from 1.47 x 10(-4) cm/s after nitrogen doping. The cell using N-doped carbon cloth as positive electrode has larger discharge capacity and higher energy efficiency compared with the cell using pristine carbon cloth. The average energy efficiency of the cell using N-doped carbon cloth for 50 cycles at 30 mA/cm(2) is 87.8%, 4.3% larger than that of the cell using pristine carbon cloth. It indicates that the N-doped carbon cloth has a promise application prospect in vanadium redox flow batteries. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
Background: Epidermal growth factor receptor(EGFR) mutation is the key predictor of EGFR tyrosine kinase inhibitors(TKIs) efficacy in non-small cell lung cancer(NSCLC). We conducted this study to verify the fea...Background: Epidermal growth factor receptor(EGFR) mutation is the key predictor of EGFR tyrosine kinase inhibitors(TKIs) efficacy in non-small cell lung cancer(NSCLC). We conducted this study to verify the feasibility of EGFR mutation analysis in cytological specimens and investigate the responsiveness to gefitinib treatment in patients carrying EGFR mutations.Methods: A total of 210 cytological specimens were collected for EGFR mutation detection by both direct sequencing and amplification refractory mutation system(ARMS). We analyzed EGFR mutation status by both methods and evaluated the responsiveness to gefitinib treatment in patients harboring EGFR mutations by overall response rate(ORR), disease control rate(DCR) and progression free survival(PFS).Results: Of all patients, EGFR mutation rate was 28.6%(60/210) by direct sequencing and 45.2%(95/210) by ARMS(P〈0.001) respectively. Among the EGFR wild type patients tested by direct sequencing, 26.7% of them were positive by ARMS. For the 72 EGFR mutation positive patients treated with gefitinib, the ORR, DCR and median PFS were 69.4%, 90.2% and 9.3 months respectively. The patients whose EGFR mutation status was negative by direct sequencing but positive by ARMS had lower ORR(48.0% vs. 80.9%, P=0.004) and shorter median PFS(7.4 vs. 10.5 months, P=0.009) as compared with that of EGFR mutation positive patients by both detection methods. Conclusions: Our study verified the feasibility of EGFR analysis in cytological specimens in advanced NSCLC. ARMS is more sensitive than direct sequencing in EGFR mutation detection. EGFR Mutation status tested on cytological samples is applicable for predicting the response to gefitinib. Abundance of EGFR mutations might have an influence on TKIs efficacy.展开更多
Successful chemotherapy with paclitaxel(PTX)is impeded by multidrug resistance(MDR)in tumor cells.In this study,lipid-albumin nanoassemblies co-loaded with borneol and paclitaxel(BOR/PTX LANs)were prepared to circumve...Successful chemotherapy with paclitaxel(PTX)is impeded by multidrug resistance(MDR)in tumor cells.In this study,lipid-albumin nanoassemblies co-loaded with borneol and paclitaxel(BOR/PTX LANs)were prepared to circumvent MDR in C6 glioma cells.The physiochemical properties including particle size,encapsulation efficiency and morphology were evaluated in vitro.Quantitative and qualitative investigations of cellular uptake were carried out in C6 glioma cells.The cytotoxicity of the BOR/PTX LANs was determined by MTT assay.After that,the tumor targeting was also evaluated in C6 glioma bearing mice by in vivo imaging analysis.BOR/PTX LANs have a higher entrapment efficiency(90.4±1.2%),small particle size(107.5±3.2 nm),narrow distribution(P.I.=0.171±0.02).The cellular uptake of PTX was significantly increased by BOR/PTX LANs compared with paclitaxel loaded lipidalbumin nanoassemblies(PTX LANs)in quantitative research.The result was further confirmed by confocal laser scanning microscopy qualitatively.The cellular uptake was energy-,timeand concentration-dependent,and clathrin-and endosome/lysosome-associated pathways were involved.The BOR/PTX LANs displayed a higher cytotoxicity agaist C6 glioma cells in comparion with PTX LANs and Taxol.Moreover,the encapsulation of BOR in LANs obviously increased the accumulation of the drug in tumor tissues,demonstrating the tumor targeted ability of BOR/PTX LANs.These results indicated that BOR/PTX LANs could overcome MDR by combination of drug delivery systems and P-gp inhibition,and shown the potential for treatment of gliomas.展开更多
Photocatalytic solar energy conversion to hydrogen is sustainable and attractive for addressing the global energy and environmental issue. Herein, a novel photocatalytic system (NiS/Ni3S4 cocatalysts modified mesoporo...Photocatalytic solar energy conversion to hydrogen is sustainable and attractive for addressing the global energy and environmental issue. Herein, a novel photocatalytic system (NiS/Ni3S4 cocatalysts modified mesoporous TiO2) with superior photocatalytic hydrogen evolution capability through the synergistic impact of NiS/Ni3S4 (NiSx) cocatalyst and efficient hole scavenger has been demonstrated. The photocatalytic hydrogen evolution of TiO2-NiSx hybrids with the different content of NiSx and upon different organic hole scavengers was both investigated. The hybrid of TiO2 decorated with 3%(mole ratio of Ni^2+) NiSx cocatalyst in methanol solution showed the optimal photocatalytic hydrogen evolution rate of 981.59 μmol h^-1 g^-1 which was about 20 times higher than that of bare mesoporous TiO2. Our results suggested that the boosted hydrogen production performance is attributed to both the improved photoinduced electrons migration between NiS and Ni3S4 in cocatalyst and the high hole captured efficiency by hole scavengers of methanol.展开更多
Objective To determine the number of goblet cells, the change of MUC5AC expression in chronic obstructive pul- monary disease (COPD) patients and the relationship of smoking with goblet cell, MUC5AC, and lung function...Objective To determine the number of goblet cells, the change of MUC5AC expression in chronic obstructive pul- monary disease (COPD) patients and the relationship of smoking with goblet cell, MUC5AC, and lung function. Methods Eighteen patients undergoing lung resections for a solitary peripheral carcinoma were classified by lung function as having COPD. Twenty patients with normal lung function served as the control group. Normal lobe bronchioles far away from the lesion site were taken for paraffin section. Goblet cells were identified by AB/PAS staining and the ex- pression of MUC5AC in the paraffin’s section was tested by immunohistochemistry. Results Goblet cell hyperplasia was observed in the COPD group. The positive rate of goblet cell in COPD group (0.20% ± 0.10%) was significantly higher than that in the normal lung function group (0.13% ± 0.06%, P < 0.05). The posi- tive rate of MUC5AC expression in the COPD group (0.27% ± 0.09%) was higher than that in the normal lung function group (0.20% ± 0.10%, P < 0.05). The positive rate of goblet cell in smokers (27.93% ± 9.00%) of the COPD group and normal lung function group was higher than that in non-smokers (17.70% ± 9.37%, P < 0.05), while MUC5AC expression had no significant difference between smokers and non-smokers (17.88% ± 6.44% and 10.88% ± 7.10%, respectively). Conclusion For COPD patients with declined lung function, there were goblet cell hyperplasia and increased expres- sion of MUC5AC. MUC5AC expression up-regulation may due to goblet cell hyperplasia. Smoking may be an important factor for goblet cell hyperplasia.展开更多
文摘Background To compare neural damage induced by ultra-high dose rate FLASH radiotherapy(FLASH-RT)with that induced by conventional dose rate radiotherapy(CONV-RT)in healthy mice.Methods Eighty adult male C57BL/6J mice were divided into five groups:Sham,CONV-RT10Gy,CONV-RT20Gy,FLASH-RT10Gy,and FLASH-RT20Gy.Three days post-irradiation,morphological changes in neurons within the dentate gyrus(DG),CA1,and CA3 were observed using hematoxylin and eosin and Nissl staining.The malondialdehyde(MDA),reduced glutathione(GSH),glutathione peroxidase(GSH-PX),superoxide dismutase(SOD),catalase(CAT),and hydroxyl radical(OH^(-))levels were measured using assay kits.Quantitative reverse transcription PCR was used to assess interleukin(IL)-1β,IL-6,inducible nitric oxide synthase(iNOS),and tumor necrosis factor(TNF)-αmRNA expression levels in hippocampus.Immunofluorescence was employed to observe microglial activation in the DG.Results Compared with Sham,CONV-RT10Gy and CONV-RT20Gy exhibited disorganized neuronal arrangements and blurred nucleoli in the DG;the number of Nissl body was reduced,but FLASH-RT10Gy and FLASH-RT20Gy alleviated these abnormalities.Moreover,FLASH-RT20Gy mitigated the upregulation of MDA and downregulation of GSH,GSH-PX,SOD,CAT,and OH^(-)levels in the hippocampus of mice subjected to CONV-RT20Gy.Additionally,FLASH-RT20Gy attenuated the upregulation of IL-1β,IL-6,iNOS,and TNF-αmRNA levels in hippocampus of mice subjected to CONV-RT20Gy and diminished microglial activation in the DG.Conclusion FLASH-RT mitigate the structural and functional disruptions in hippocampal neurons induced by CONV-RT and alleviate oxidative stress and inflammation in hippocampal tissue by reducing microglial activation.
文摘文中以硅酸四乙酯、异氰酸丙基三乙氧基硅烷、1-羟甲基-5,5-二甲基乙内酰脲等为原料,采用原位成型法在棉织物表面生长卤胺化纳米二氧化硅颗粒并对其进行氯化处理,制备了具有抗菌和疏水双重功能的棉织物。探究了卤胺化纳米二氧化硅颗粒合成的最佳工艺,对整理前后的棉织物的表面形貌、氯含量、氯含量稳定性、接触角和抗菌性能进行了表征分析。结果表明,合成体系中氨水为20 m L时,卤胺化二氧化硅颗粒均匀;氯化后棉织物具有良好的疏水性,接触角为131.9°;棉织物的氯含量达到0.46%,在30 min内能够完全灭活大肠杆菌和金黄色葡萄球菌。此外,还考察了整理织物的储存稳定性、再生性和力学性能。
基金supported by the National Natural Science Foundation of China(Grant Nos.42225702 and 42077235)the Natural Science Foundation of Jiangsu Province(Grant No.BK20211086)the open fund of the Key Laboratory of Earth Fissures Geological Disaster,Ministry of Natural Resources.
文摘The distribution of shear-wave velocities in the subsurface is generally used to assess the potential forseismic liquefaction and soil amplification effects and to classify seismic sites. Newly developeddistributed acoustic sensing (DAS) technology enables estimation of the shear-wave distribution as ahigh-density seismic observation system. This technology is characterized by low maintenance costs,high-resolution outputs, and real-time data transmission capabilities, albeit with the challenge ofmanaging massive data generation. Rapid and efficient interpretation of data is the key to advancingapplication of the DAS technology. In this study, field tests were carried out to record ambient noise overa short period using DAS technology, from which the surface-wave dispersion curves were extracted. Inorder to reduce the influence of directional effects on the results, an unsupervised clustering method isused to select appropriate clusters to extract the Green's function. A combination of a genetic algorithmand Monte Carlo (GA-MC) simulation is proposed to invert the subsurface velocity structure. Thestratigraphic profiles obtained by the GA-MC method are in agreement with the borehole profiles.Compared to other methods, the proposed optimization method not only improves the solution qualitybut also reduces the solution time.
基金supported by the Key Support Project of Regional Innovation and Development Joint Fund of National Natural Science Foundation of China(U20A20398)the National Natural Science Foundation of China(82104454,82374399)+1 种基金the Clinical Medical Research Transformation Project of Anhui Province(202304295107020111)the Natural Science Research Key Project of Anhui Provincial Department of Education(KJ2021A0542).
文摘Background:Chronic obstructive pulmonary disease(COPD)is a prevalent respiratory ailment that has risen to become the foremost cause of mortality globally,and statins are a widely used class of lipid-modifying drugs.Data from some observational studies suggest an association between statins use and COPD.Objectives:The main objective of this study was to investigate whether lipids and apolipoproteins are bidirectionally causally associated with COPD at the genetic level using a Mendelian randomization(MR)design,and to determine the potential role of circulating inflammatory proteins as mediators in this association.Methods:The publicly available Genome-Wide Association Study(GWAS)database was utilised for the purposes of the analysis.The data on high-density lipoprotein(HDL-C),low-density lipoprotein(LDL-C),triglycerides(TG),apolipoprotein A-1(ApoA1),and apolipoprotein B(ApoB)were obtained from the UK BioBank,while the COPD dataset was obtained from the FinnGen BioBank R11(number of cases:21,617,number of controls:372,627).Furthermore,data were gathered on genetic variants linked to inflammatory processes,encompassing 91 circulating inflammatory proteins(n=14,823 individuals).A two-sample MR study was conducted using these data to assess the association between HDL-C,LDL-C,TG,ApoA1,and ApoB with the risk of COPD.Furthermore,in order to investigate the potential mediating influence of inflammatory factor alterations between lipids and COPD,a two-step Mendelian randomization(MR)mediation analysis was conducted.Results:The forward MR methods identified two lipids that were found to have a causal relationship with the development of COPD.An elevated level of LDL-C and ApoB was found to be associated with a diminished risk of COPD.Furthermore,the researchers identified circulating inflammatory factors that were determined to be the causal agents in the development of COPD.Mediation analysis indicated that the inflammatory protein S100-A12 may act as a mediator between the LDL-C and COPD pathways.Conclusion:The present MR study provides genetic evidence for a causal relationship between lipids and apolipoproteins and COPD,as well as identifying the inflammatory protein S100-A12 as a potential mediator of the COPD association.The findings offer valuable insights into the mechanistic studies of statins for COPD and potential targets for disease intervention and treatment.
基金supported by the National Natural Science Foundation of China(Grant Nos.62071451,62331025,and U21A20447)the National Key Research and Development Project(Grant No.2021YFC3002204)the CAMS Innovation Fund for Medical Sciences(Grant No.2019-I2M-5-019).
文摘Dementias such as Alzheimer disease(AD)and mild cognitive impairment(MCI)lead to problems with memory,language,and daily activities resulting from damage to neurons in the brain.Given the irreversibility of this neuronal damage,it is crucial to find a biomarker to distinguish individuals with these diseases from healthy people.In this study,we construct a brain function network based on electroencephalography data to study changes in AD and MCI patients.Using a graph-theoretical approach,we examine connectivity features and explore their contributions to dementia recognition at edge,node,and network levels.We find that connectivity is reduced in AD and MCI patients compared with healthy controls.We also find that the edge-level features give the best performance when machine learning models are used to recognize dementia.The results of feature selection identify the top 50 ranked edge-level features constituting an optimal subset,which is mainly connected with the frontal nodes.A threshold analysis reveals that the performance of edge-level features is more sensitive to the threshold for the connection strength than that of node-and network-level features.In addition,edge-level features with a threshold of 0 provide the most effective dementia recognition.The K-nearest neighbors(KNN)machine learning model achieves the highest accuracy of 0.978 with the optimal subset when the threshold is 0.Visualization of edge-level features suggests that there are more long connections linking the frontal region with the occipital and parietal regions in AD and MCI patients compared with healthy controls.Our codes are publicly available at https://github.com/Debbie-85/eeg-connectivity.
文摘BACKGROUND Patients undergoing interventional therapy for liver cancer experience severe psychological pain and are prone to anxiety and depression.AIM To explore factors influencing anxiety and depression symptoms in 200 patients diagnosed with primary liver cancer.METHODS Data from 200 individuals diagnosed with primary liver cancer and admitted to the authors’hospital(January 2022 to January 2024)were divided into 2 groups according to psychological status:Normal(n=100);and anxiety and depression(n=100).Through a questionnaire survey of patients and their families,single and multifactor factors of anxiety and depression in the postoperative interven-tional treatment of patients with primary liver cancer were analyzed.RESULTS Univariate analysis revealed no statistical differences between the 2 groups in terms of chronic disease,sex,liver function,Child grade,and age(P>0.05).How-ever,there were statistical differences in payment method,disease cognition,number of interventional treatments,per capita income,and educational level(P<0.05).Multivariate logistic regression analysis revealed that educational level,per capita income,disease cognition,payment method,and number of interven-tional treatments were all independent factors influencing postoperative anxiety and depression symptoms after interventional therapy in patients diagnosed with primary liver cancer,and the comparisons were statistically significant(P<0.05).CONCLUSION Analysis of associated risk factors can strengthen the clinical screening of patients with liver cancer at high risk for postoperative anxiety and depression symptoms and improve their prognosis.
文摘Prostate cancer (PCa) is the second most common type of cancer among men worldwide and one of the leading causes of cancer-related deaths. According to data from the World Health Organization (WHO), this cancer causes hundreds of thousands of new cases and tens of thousands of male deaths globally each year. The incidence of PCa varies across different regions and populations, generally being higher in developed countries. This disparity may be attributed to lifestyle factors and the widespread availability of screening and diagnostic technologies. Prostate-specific membrane antigen (PSMA) is a membrane-bound enzyme predominantly expressed in prostate tissue and PCa cells, with lower expression in normal tissues. This high expression makes PSMA a critical target for the diagnosis and treatment of PCa, particularly in the field of molecular imaging and radiopharmaceutical therapy. Recently, various studies have emerged on radiopharmaceuticals developed based on PSMA ligands, which can be used to specifically identify and locate PCa cells. Research on the radiomics of these novel drugs has also been updated. This article will discuss the role and limitations of PSMA PET in the diagnosis and management of PCa treatment.
基金We acknowledge the funding support from the National Science Fund for Distinguished Young Scholars of National Natural Science Foundation of China(Grant No.42225702)the National Natural Science Foundation of China(Grant No.42077235).
文摘Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond the slip surface to progressive failure.Here,we aim to investigate the subsurface multiphysics of reservoir landslides under two extreme hydrologic conditions(i.e.wet and dry),particularly within sliding masses.Based on ultra-weak fiber Bragg grating(UWFBG)technology,we employ specialpurpose fiber optic sensing cables that can be implanted into boreholes as“nerves of the Earth”to collect data on soil temperature,water content,pore water pressure,and strain.The Xinpu landslide in the middle reach of the Three Gorges Reservoir Area in China was selected as a case study to establish a paradigm for in situ thermo-hydro-poro-mechanical monitoring.These UWFBG-based sensing cables were vertically buried in a 31 m-deep borehole at the foot of the landslide,with a resolution of 1 m except for the pressure sensor.We reported field measurements covering the period 2021 and 2022 and produced the spatiotemporal profiles throughout the borehole.Results show that wet years are more likely to motivate landslide motions than dry years.The annual thermally active layer of the landslide has a critical depth of roughly 9 m and might move downward in warmer years.The dynamic groundwater table is located at depths of 9e15 m,where the peaked strain undergoes a periodical response of leap and withdrawal to annual hydrometeorological cycles.These interface behaviors may support the interpretation of the contribution of reservoir regulation to slope stability,allowing us to correlate them to local damage events and potential global destabilization.This paper also offers a natural framework for interpreting thermo-hydro-poro-mechanical signatures from creeping reservoir bank slopes,which may form the basis for a landslide monitoring and early warning system.
基金supported by the National Natural Science Foundation of China(No.51872090)Natural Science Foundation of Hebei Province(No.E2019209433,E2022209158)Colleges and Universities in Hebei Province Science and Technology Research Project(No.JZX2024026).
文摘The scarcity of wettability,insufficient active sites,and low surface area of graphite felt(GF)have long been suppressing the performance of vanadium redox flow batteries(VRFBs).Herein,an ultra-homogeneous multipledimensioned defect,including nano-scale etching and atomic-scale N,O codoping,was used to modify GF by the molten salt system.NH_(4)Cl and KClO_(3) were added simultaneously to the system to obtain porous N/O co-doped electrode(GF/ON),where KClO_(3) was used to ultra-homogeneously etch,and O-functionalize electrode,and NH4Cl was used as N dopant,respectively.GF/ON presents better electrochemical catalysis for VO_(2)+/VO_(2)+ and V3+/V2+ reactions than only O-functionalized electrodes(GF/O)and GF.The enhanced electrochemical properties are attributed to an increase in active sites,surface area,and wettability,as well as the synergistic effect of N and O,which is also supported by the density functional theory calculations.Further,the cell using GF/ON shows higher discharge capacity,energy efficiency,and stability for cycling performance than the pristine cell at 140 mA cm^(−2) for 200 cycles.Moreover,the energy efficiency of the modified cell is increased by 9.7% from 55.2% for the pristine cell at 260 mA cm^(−2).Such an ultra-homogeneous etching with N and O co-doping through“boiling”molten salt medium provides an effective and practical application potential way to prepare superior electrodes for VRFB.
文摘In recent years, there has been a global rise in cases of papillary thyroid carcinoma (PTC), the predominant form of thyroid cancer. Advances in molecular biology have intensified the focus on the genetic mutations associated with this malignancy. Researchers have conducted extensive investigations into these mutations to elucidate their roles in the initiation, progression, treatment, and prognosis of PTC. This review synthesizes studies on the genetic mutations implicated in PTC, examining specific mutated genes, mechanisms of mutation, correlations with clinicopathological features, and their influence on treatment outcomes and prognosis. The objective is to provide a theoretical framework for enhancing the diagnosis, treatment, and prognostic assessment of PTC in the future.
基金Acknowledgments The authors wish to thank the National Natural Science Foundation of China (Grant No. 51005234 and 50905180), the Foundation of China University of Mining and Technology (Grant No. 2009A056) and the Natural Science Foundation of Jiangsu Province (Grant No. BK2008005).
文摘Titanium cermets were successfully synthesized on the surface of biomedical grade titanium alloys by using sequential carburization method. The mechanical properties such as hardness, fracture toughness and plasticity were measured to estimate the potential application of titanium cermets. The results show that after carburization the surface hardness of titanium cermets was 778 HV, with a significant improvement of 128% compared with that of titanium alloys. In addition, the fracture toughness of titanium cermets was 21.5 × 10^6 Pa.m^1/2, much higher than that of other ceramics. Furthermore, the analysis of the loading-unloading curve in the nanoindentation test also indicates that the plasticity of titanium cermet reached 32.1%, a relatively high value which illustrates the combination of the metal and ceramics properties. The results suggest that sequential carburization should be an efficient way to produce titanium cermets with hard surface, high toughness and plasticity.
基金Project supported by the National Basic Research Program of China(2014CB643703)the National Key Research and Development Program of China(2016YFB0700901)the National Natural Science Foundation of China(51261004,51461012)
文摘With the intention to explore excellent magnetocaloric materials, the intermetallic compound GdPd was synthesized by arc melting and heat treatment. The microstructure, magnetic and magnetocaloric properties of the intermetallic compound of GdPd were investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM) and the physical property measurement system(PPMS). A large reversible magnetocaloric effect is observed in GdPd accompanied by a second order magnetic phase transition from paramagnetism to ferromagnetism at ~39 K. The paramagnetic Curie temperature(θp) and the effective magnetic moment(μ(eff))are determined to be 34.7 K and 8.12 μB/Gd,respectively. The maximum entropy change(|△SM(Max)|) and the relative cooling power(RCP) under a field change of 5 T are estimated to be 20.14 J/(kg·K) and 433 J/kg, respectively. The giant reversible magnetocaloric effects(both the large△SM and the high RCP) together with the absence of thermal and field hysteresis make the GdPd compound an attractive candidate for low-temperature magnetic refrigeration.
基金funding support from the National Natural Science Foundation of China (Grant No. 42225702)the Central Government Guided Local Science and Technology Development Fund (Grant No. 226Z5404G)the Natural Science Foundation of Hebei Province,China (Grant No. D2022508002)。
文摘Understanding the spatiotemporal evolution of overburden deformation during coal mining is still a challenge in engineering practice due to the limitation of monitoring techniques. Taking the Yangliu Coal Mine as an example, a similarity model test was designed and conducted to investigate the deformation and failure mechanism of overlying rocks in this study. Distributed fiber optic sensing(DFOS), highdensity electrical resistivity tomography(HD-ERT) and close-range photogrammetry(CRP) technologies were used in the test for comprehensive analyses. The combined use of the three methods facilitates the investigation of the spatiotemporal evolution characteristics of overburden deformation, showing that the mining-induced deformation of overburden strata was a dynamic evolution process. This process was accompanied by the formation, propagation, closure and redevelopment of separation cracks.Moreover, the key rock stratum with high strength and high-quality lithology played a crucial role in the whole process of overburden deformation. There were generally three failure modes of overburden rock layers, including bending and tension, overall shearing, and shearing and sliding. Shear failure often leads to overburden falling off in blocks, which poses a serious threat to mining safety. Therefore, realtime and accurate monitoring of overburden deformation is of great significance for the safe mining of underground coal seams.
基金supported by the Open Project Program of Jiangxi Engineering Research Center of Process and Equipment for New Energy,East China Institute of Technology(No.JXNE2015-14)Youth Foundation of Education Department of Hebei Province(No.QN2016183)the National Natural Science Foundation of China(No.51362002)
文摘Carbon cloth modified by hydrothermal treatment in ammonia water is developed as the positive electrode with high electrochemical performance for vanadium redox flow batteries. The SEM shows that the treatment has no obvious influence on the morphology of carbon cloth. XPS measurements indicate that the nitrogenous functional groups can be introduced on the surface of carbon cloth successfully. The electrochemical performance of V(IV)/V(V) redox couple on the prepared electrode is evaluated with cyclic voltammetry and linear sweep voltammetry measurements. The N-doped carbon cloth exhibits outstanding electrochemical activity and reversibility toward V(IV)/V(V) redox couple. The rate constant of V(IV)/V(V) redox reaction on carbon cloth can increase to 2.27 x 10(-4) cm/s from 1.47 x 10(-4) cm/s after nitrogen doping. The cell using N-doped carbon cloth as positive electrode has larger discharge capacity and higher energy efficiency compared with the cell using pristine carbon cloth. The average energy efficiency of the cell using N-doped carbon cloth for 50 cycles at 30 mA/cm(2) is 87.8%, 4.3% larger than that of the cell using pristine carbon cloth. It indicates that the N-doped carbon cloth has a promise application prospect in vanadium redox flow batteries. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
文摘Background: Epidermal growth factor receptor(EGFR) mutation is the key predictor of EGFR tyrosine kinase inhibitors(TKIs) efficacy in non-small cell lung cancer(NSCLC). We conducted this study to verify the feasibility of EGFR mutation analysis in cytological specimens and investigate the responsiveness to gefitinib treatment in patients carrying EGFR mutations.Methods: A total of 210 cytological specimens were collected for EGFR mutation detection by both direct sequencing and amplification refractory mutation system(ARMS). We analyzed EGFR mutation status by both methods and evaluated the responsiveness to gefitinib treatment in patients harboring EGFR mutations by overall response rate(ORR), disease control rate(DCR) and progression free survival(PFS).Results: Of all patients, EGFR mutation rate was 28.6%(60/210) by direct sequencing and 45.2%(95/210) by ARMS(P〈0.001) respectively. Among the EGFR wild type patients tested by direct sequencing, 26.7% of them were positive by ARMS. For the 72 EGFR mutation positive patients treated with gefitinib, the ORR, DCR and median PFS were 69.4%, 90.2% and 9.3 months respectively. The patients whose EGFR mutation status was negative by direct sequencing but positive by ARMS had lower ORR(48.0% vs. 80.9%, P=0.004) and shorter median PFS(7.4 vs. 10.5 months, P=0.009) as compared with that of EGFR mutation positive patients by both detection methods. Conclusions: Our study verified the feasibility of EGFR analysis in cytological specimens in advanced NSCLC. ARMS is more sensitive than direct sequencing in EGFR mutation detection. EGFR Mutation status tested on cytological samples is applicable for predicting the response to gefitinib. Abundance of EGFR mutations might have an influence on TKIs efficacy.
文摘Successful chemotherapy with paclitaxel(PTX)is impeded by multidrug resistance(MDR)in tumor cells.In this study,lipid-albumin nanoassemblies co-loaded with borneol and paclitaxel(BOR/PTX LANs)were prepared to circumvent MDR in C6 glioma cells.The physiochemical properties including particle size,encapsulation efficiency and morphology were evaluated in vitro.Quantitative and qualitative investigations of cellular uptake were carried out in C6 glioma cells.The cytotoxicity of the BOR/PTX LANs was determined by MTT assay.After that,the tumor targeting was also evaluated in C6 glioma bearing mice by in vivo imaging analysis.BOR/PTX LANs have a higher entrapment efficiency(90.4±1.2%),small particle size(107.5±3.2 nm),narrow distribution(P.I.=0.171±0.02).The cellular uptake of PTX was significantly increased by BOR/PTX LANs compared with paclitaxel loaded lipidalbumin nanoassemblies(PTX LANs)in quantitative research.The result was further confirmed by confocal laser scanning microscopy qualitatively.The cellular uptake was energy-,timeand concentration-dependent,and clathrin-and endosome/lysosome-associated pathways were involved.The BOR/PTX LANs displayed a higher cytotoxicity agaist C6 glioma cells in comparion with PTX LANs and Taxol.Moreover,the encapsulation of BOR in LANs obviously increased the accumulation of the drug in tumor tissues,demonstrating the tumor targeted ability of BOR/PTX LANs.These results indicated that BOR/PTX LANs could overcome MDR by combination of drug delivery systems and P-gp inhibition,and shown the potential for treatment of gliomas.
基金the National Natural Science Foundation of China(21501137)the Hubei Natural Science Foundation for financial support(2018CFB680)Support from the Australian Research Council(ARC)through ARC Discovery projects(DP130102699,DP 130102274,DP160102627)
文摘Photocatalytic solar energy conversion to hydrogen is sustainable and attractive for addressing the global energy and environmental issue. Herein, a novel photocatalytic system (NiS/Ni3S4 cocatalysts modified mesoporous TiO2) with superior photocatalytic hydrogen evolution capability through the synergistic impact of NiS/Ni3S4 (NiSx) cocatalyst and efficient hole scavenger has been demonstrated. The photocatalytic hydrogen evolution of TiO2-NiSx hybrids with the different content of NiSx and upon different organic hole scavengers was both investigated. The hybrid of TiO2 decorated with 3%(mole ratio of Ni^2+) NiSx cocatalyst in methanol solution showed the optimal photocatalytic hydrogen evolution rate of 981.59 μmol h^-1 g^-1 which was about 20 times higher than that of bare mesoporous TiO2. Our results suggested that the boosted hydrogen production performance is attributed to both the improved photoinduced electrons migration between NiS and Ni3S4 in cocatalyst and the high hole captured efficiency by hole scavengers of methanol.
文摘Objective To determine the number of goblet cells, the change of MUC5AC expression in chronic obstructive pul- monary disease (COPD) patients and the relationship of smoking with goblet cell, MUC5AC, and lung function. Methods Eighteen patients undergoing lung resections for a solitary peripheral carcinoma were classified by lung function as having COPD. Twenty patients with normal lung function served as the control group. Normal lobe bronchioles far away from the lesion site were taken for paraffin section. Goblet cells were identified by AB/PAS staining and the ex- pression of MUC5AC in the paraffin’s section was tested by immunohistochemistry. Results Goblet cell hyperplasia was observed in the COPD group. The positive rate of goblet cell in COPD group (0.20% ± 0.10%) was significantly higher than that in the normal lung function group (0.13% ± 0.06%, P < 0.05). The posi- tive rate of MUC5AC expression in the COPD group (0.27% ± 0.09%) was higher than that in the normal lung function group (0.20% ± 0.10%, P < 0.05). The positive rate of goblet cell in smokers (27.93% ± 9.00%) of the COPD group and normal lung function group was higher than that in non-smokers (17.70% ± 9.37%, P < 0.05), while MUC5AC expression had no significant difference between smokers and non-smokers (17.88% ± 6.44% and 10.88% ± 7.10%, respectively). Conclusion For COPD patients with declined lung function, there were goblet cell hyperplasia and increased expres- sion of MUC5AC. MUC5AC expression up-regulation may due to goblet cell hyperplasia. Smoking may be an important factor for goblet cell hyperplasia.