The weak-localization effect on the quasiparticle density of states (DOS) is studied with the diagrammatic technique in the binary-alloy model of disordered two-dimensional d-wave superconductors both in the Born and ...The weak-localization effect on the quasiparticle density of states (DOS) is studied with the diagrammatic technique in the binary-alloy model of disordered two-dimensional d-wave superconductors both in the Born and the unitary limits. We derive in details the expressions of the Goldstone modes (cooperon and diffuson) for quasiparticle diffuson. For generic Fermi surfaces, the DOS is shown to be subject to a quantum interference correction of logarithmic suppression. In the combined limit of unitarity and nested Fermi surface (the UN limit), it is found that the self-energy diagrams with two π-mode diffusons make additional contributions to the weak-localization effect, which has not been considered in the previous diagrammatic analysis. Due to the contributions of these new diagrams, the DOS in the UN limit is shown to have also a negative logarithmic correction, which is qualitatively different from the previous prediction.展开更多
We calculate the lowest-order quantum-interference correction to the density of states (DOS) of weakly-disordered two-dimensional (2D) tight-binding square lattices around half filling. The impurities are assumed to b...We calculate the lowest-order quantum-interference correction to the density of states (DOS) of weakly-disordered two-dimensional (2D) tight-binding square lattices around half filling. The impurities are assumed to be randomly distributed on small fractions of the sites, and have a-strong potential yielding a unitary-limit scattering. In addition to the usual diffusive modes in the retarded-advanced channel, there appear diffusive pi modes in the retarded-retarded (or advanced-advanced) channel due to the existence of particle-hole symmetry. It is found that the pi-mode diffuson gives rise to a logarithmic suppression to the DOS near the band center, which prevails over the positive correction contributed by pi-mode cooperon. As a result, the DOS is subject to a negative total correction. This result is qualitatively different from the divergent behavior of the DOS at the band center predicted previously for disordered 2D two-sublattice models with the particle-hole symmetry.展开更多
文摘The weak-localization effect on the quasiparticle density of states (DOS) is studied with the diagrammatic technique in the binary-alloy model of disordered two-dimensional d-wave superconductors both in the Born and the unitary limits. We derive in details the expressions of the Goldstone modes (cooperon and diffuson) for quasiparticle diffuson. For generic Fermi surfaces, the DOS is shown to be subject to a quantum interference correction of logarithmic suppression. In the combined limit of unitarity and nested Fermi surface (the UN limit), it is found that the self-energy diagrams with two π-mode diffusons make additional contributions to the weak-localization effect, which has not been considered in the previous diagrammatic analysis. Due to the contributions of these new diagrams, the DOS in the UN limit is shown to have also a negative logarithmic correction, which is qualitatively different from the previous prediction.
文摘We calculate the lowest-order quantum-interference correction to the density of states (DOS) of weakly-disordered two-dimensional (2D) tight-binding square lattices around half filling. The impurities are assumed to be randomly distributed on small fractions of the sites, and have a-strong potential yielding a unitary-limit scattering. In addition to the usual diffusive modes in the retarded-advanced channel, there appear diffusive pi modes in the retarded-retarded (or advanced-advanced) channel due to the existence of particle-hole symmetry. It is found that the pi-mode diffuson gives rise to a logarithmic suppression to the DOS near the band center, which prevails over the positive correction contributed by pi-mode cooperon. As a result, the DOS is subject to a negative total correction. This result is qualitatively different from the divergent behavior of the DOS at the band center predicted previously for disordered 2D two-sublattice models with the particle-hole symmetry.