Non-thermal plasma has been proved to be an effective and competitive technology for removing NO in flue gas since 1970. In this paper, the NO reduction mechanism of the non-thermal plasma reaction in NO/N_2/O_2 syste...Non-thermal plasma has been proved to be an effective and competitive technology for removing NO in flue gas since 1970. In this paper, the NO reduction mechanism of the non-thermal plasma reaction in NO/N_2/O_2 system was investigated using the method of spectral analysis and quantum chemistry. By the establishment of NO reduction and gas discharge plasma emission spectrum measuring system, the NO reduction results, gas discharge emission spectra of NO/N_2/O_2 and pure N_2 were obtained, and then the model of molecular orbit of N_2 either in ground state or its excited state was worked out using the method of molecular orbit Ab initio in Self-Consistent Field(SCF). It was found that NO reduction in NO/N_2 gas discharge plasma was achieved mainly through a series of fast elementary reactions and the N(E6) at excited state was the base for NO reduction.展开更多
基金The National Basic Research Program(973) of China(No. G19990222909)
文摘Non-thermal plasma has been proved to be an effective and competitive technology for removing NO in flue gas since 1970. In this paper, the NO reduction mechanism of the non-thermal plasma reaction in NO/N_2/O_2 system was investigated using the method of spectral analysis and quantum chemistry. By the establishment of NO reduction and gas discharge plasma emission spectrum measuring system, the NO reduction results, gas discharge emission spectra of NO/N_2/O_2 and pure N_2 were obtained, and then the model of molecular orbit of N_2 either in ground state or its excited state was worked out using the method of molecular orbit Ab initio in Self-Consistent Field(SCF). It was found that NO reduction in NO/N_2 gas discharge plasma was achieved mainly through a series of fast elementary reactions and the N(E6) at excited state was the base for NO reduction.