卫星微波垂直探测器的辐射观测资料在数值预报中的同化应用使得数值预报水平有了巨大的飞跃。微波资料的质量控制是保证观测资料成功同化的关键所在。文章提出一种基于AMSU-A(Advanced Microwave Sounding Unit-A)辐射亮温资料梯度信息...卫星微波垂直探测器的辐射观测资料在数值预报中的同化应用使得数值预报水平有了巨大的飞跃。微波资料的质量控制是保证观测资料成功同化的关键所在。文章提出一种基于AMSU-A(Advanced Microwave Sounding Unit-A)辐射亮温资料梯度信息的新质量控制方法,将亮温梯度距平值明显较大的资料作为被降水污染或因为其他原因出现的"坏"的资料。利用中尺度非静力WRF(Weather Research and Forecasting)模式和区域三维变分同化,针对"海鸥"(2008)和"圆规"(2010)2个个例,对比旧质量控制中的降水检测和阈值检测方法,评估该方法用于AMSU-A资料同化时对台风数值模拟的情况。研究表明,旧质量控制方法将会使一些"坏"的微波观测资料同化进入模式,降低模式分析场的质量,进而导致同化结果有较大误差。相对于旧方法获得的分析场,利用基于亮温梯度信息的质量控制方法可使更多"坏"的观测剔除,同化后模式初始时刻的位势高度场和风场更接近于真实情况。与传统AMSU-A辐射资料的同化相比,新质量控制方案使2个台风路径数值模拟的偏差有明显的减小:"海鸥"个例中,模拟台风路径误差的最大改善比为12,路径误差改善约540km;"圆规"个例的最大改善比为13,模拟路径误差减小118km。展开更多
With the rapid development of immersive multimedia technologies,360-degree video services have quickly gained popularity and how to ensure sufficient spatial presence of end users when viewing 360-degree videos become...With the rapid development of immersive multimedia technologies,360-degree video services have quickly gained popularity and how to ensure sufficient spatial presence of end users when viewing 360-degree videos becomes a new challenge.In this regard,accurately acquiring users’sense of spatial presence is of fundamental importance for video service providers to improve their service quality.Unfortunately,there is no efficient evaluation model so far for measuring the sense of spatial presence for 360-degree videos.In this paper,we first design an assessment framework to clarify the influencing factors of spatial presence.Related parameters of 360-degree videos and headmounted display devices are both considered in this framework.Well-designed subjective experiments are then conducted to investigate the impact of various influencing factors on the sense of presence.Based on the subjective ratings,we propose a spatial presence assessment model that can be easily deployed in 360-degree video applications.To the best of our knowledge,this is the first attempt in literature to establish a quantitative spatial presence assessment model by using technical parameters that are easily extracted.Experimental results demonstrate that the proposed model can reliably predict the sense of spatial presence.展开更多
文摘卫星微波垂直探测器的辐射观测资料在数值预报中的同化应用使得数值预报水平有了巨大的飞跃。微波资料的质量控制是保证观测资料成功同化的关键所在。文章提出一种基于AMSU-A(Advanced Microwave Sounding Unit-A)辐射亮温资料梯度信息的新质量控制方法,将亮温梯度距平值明显较大的资料作为被降水污染或因为其他原因出现的"坏"的资料。利用中尺度非静力WRF(Weather Research and Forecasting)模式和区域三维变分同化,针对"海鸥"(2008)和"圆规"(2010)2个个例,对比旧质量控制中的降水检测和阈值检测方法,评估该方法用于AMSU-A资料同化时对台风数值模拟的情况。研究表明,旧质量控制方法将会使一些"坏"的微波观测资料同化进入模式,降低模式分析场的质量,进而导致同化结果有较大误差。相对于旧方法获得的分析场,利用基于亮温梯度信息的质量控制方法可使更多"坏"的观测剔除,同化后模式初始时刻的位势高度场和风场更接近于真实情况。与传统AMSU-A辐射资料的同化相比,新质量控制方案使2个台风路径数值模拟的偏差有明显的减小:"海鸥"个例中,模拟台风路径误差的最大改善比为12,路径误差改善约540km;"圆规"个例的最大改善比为13,模拟路径误差减小118km。
基金supported in part by ZTE Industry⁃University⁃Institute Coop⁃eration Funds.
文摘With the rapid development of immersive multimedia technologies,360-degree video services have quickly gained popularity and how to ensure sufficient spatial presence of end users when viewing 360-degree videos becomes a new challenge.In this regard,accurately acquiring users’sense of spatial presence is of fundamental importance for video service providers to improve their service quality.Unfortunately,there is no efficient evaluation model so far for measuring the sense of spatial presence for 360-degree videos.In this paper,we first design an assessment framework to clarify the influencing factors of spatial presence.Related parameters of 360-degree videos and headmounted display devices are both considered in this framework.Well-designed subjective experiments are then conducted to investigate the impact of various influencing factors on the sense of presence.Based on the subjective ratings,we propose a spatial presence assessment model that can be easily deployed in 360-degree video applications.To the best of our knowledge,this is the first attempt in literature to establish a quantitative spatial presence assessment model by using technical parameters that are easily extracted.Experimental results demonstrate that the proposed model can reliably predict the sense of spatial presence.