Cu,Zn SOD is a highly conserved enzyme and the controversy about its evolutionary possibility in the near future has been lively. In order to further our understanding of the future fate of human Cu,Zn SOD, we adopt...Cu,Zn SOD is a highly conserved enzyme and the controversy about its evolutionary possibility in the near future has been lively. In order to further our understanding of the future fate of human Cu,Zn SOD, we adopted a strategy relating to the directed evolution to study how the mutants of human Cu,Zn SOD respond to different oxidative stress. After five rounds of screening, we found a mutant that can survive under harsh pressures and DNA sequencing proves that it shows a mutation responsible for the phenomenon. However, under natural pressure, our screening comes to nothing. Then we may draw the following conclusions: the evolution of biological macromolecules in some respect depends on their surroundings and if they are too familiar with a certain environment, they may embody evolutionary inertia.展开更多
In order to learn the expression pattern of GRP1 8(glycine rich protein) gene promoter in transgenic plants and to explore its potential application in plant genetic engineering for vascular specific expression of...In order to learn the expression pattern of GRP1 8(glycine rich protein) gene promoter in transgenic plants and to explore its potential application in plant genetic engineering for vascular specific expression of interested genes, GRP 1 8 promoter was amplified by PCR from Chinese bean genomic DNA. The intermediate vector was constructed by inserting vascular specific expression promoter of GRP 1 8 gene in vector pBI 101. The regenerated tobacco plants obtained were analyzed by PCR to select the putative transgenic plants. The histochemical localization of GUS( β D glucosidase) activity indicates that as for that of GRP 1 8 promoter we can confer the vascular specific expression of GUS gene.展开更多
文摘Cu,Zn SOD is a highly conserved enzyme and the controversy about its evolutionary possibility in the near future has been lively. In order to further our understanding of the future fate of human Cu,Zn SOD, we adopted a strategy relating to the directed evolution to study how the mutants of human Cu,Zn SOD respond to different oxidative stress. After five rounds of screening, we found a mutant that can survive under harsh pressures and DNA sequencing proves that it shows a mutation responsible for the phenomenon. However, under natural pressure, our screening comes to nothing. Then we may draw the following conclusions: the evolution of biological macromolecules in some respect depends on their surroundings and if they are too familiar with a certain environment, they may embody evolutionary inertia.
基金Supported by the National Natural Science Foundation of China(No.39730 35 0 ) .
文摘In order to learn the expression pattern of GRP1 8(glycine rich protein) gene promoter in transgenic plants and to explore its potential application in plant genetic engineering for vascular specific expression of interested genes, GRP 1 8 promoter was amplified by PCR from Chinese bean genomic DNA. The intermediate vector was constructed by inserting vascular specific expression promoter of GRP 1 8 gene in vector pBI 101. The regenerated tobacco plants obtained were analyzed by PCR to select the putative transgenic plants. The histochemical localization of GUS( β D glucosidase) activity indicates that as for that of GRP 1 8 promoter we can confer the vascular specific expression of GUS gene.