The modern high performance air vehicles are required to have extreme maneuverability,which includes the ability of controlled maneuvers at high angle of attack. However, the nonlinear and unsteady aerodynamic phenome...The modern high performance air vehicles are required to have extreme maneuverability,which includes the ability of controlled maneuvers at high angle of attack. However, the nonlinear and unsteady aerodynamic phenomena, such as flow separation, vortices interaction, and vortices breaking down, will occur during the flight at high angle of attack, which could induce the uncommanded motions for the air vehicles. For the high maneuverable and agile air missile, the nonlinear roll motions would occur at the high angle of attack. The present work is focused on the selfinduced nonlinear roll motion for a missile configuration and discusses the influence of the strake wings on the roll motion according to the results from free-to-roll test and PIV measurement using the models assembled with different strake wings at a = 60°. The free-to-roll results show that the model with whole strake wings(baseline), the model assembled with three strake wings(Case A)and the model assembled with two opposite strake wings(Case C) experience the spinning, while the model assembled with two adjacent strake wings(Case B), the model assembled with one strake wing(Case D) and the model with no strake wing(Case E) trim or slightly vibrate at a certain "×"rolling angle, which mean that the rolling stability can be improved by dismantling certain strake wings. The flow field results from PIV measurement show that the leeward asymmetric vortices are induced by the windward strake wings. The vortices would interact the strake wings and induce crossflow on the downstream fins to degrade the rolling stability of the model. This could be the main reason for the self-induced roll motion of the model at a = 60°.展开更多
The coordinated and integrated development of regional airport group system has been identified as an important research topic in the field of air traffic management in China.However,due to the clear limitation on air...The coordinated and integrated development of regional airport group system has been identified as an important research topic in the field of air traffic management in China.However,due to the clear limitation on airspace resources and severe traffic congestion,it is necessary to further study the problem of flight schedule coordination optimization for airport clusters.We take the Beijing-Tianjin-Hebei airport Group as an example and construct an optimization model of flight schedule with the minimum adjustment and delay.The design of the implementation algorithm is proposed.As demonstrated by the simulation results,the flight delay in the Beijing-Tianjin-Hebei multi-airport system is noticeably reduced by applying both the optimization model and the algorithm proposed in this paper.展开更多
This study takes the novel approach of using a counterflowing jet positioned on the nose of a lifting-body vehicle to explore its drag reduction effect at a range of angles of attack.Numerical studies are conducted at...This study takes the novel approach of using a counterflowing jet positioned on the nose of a lifting-body vehicle to explore its drag reduction effect at a range of angles of attack.Numerical studies are conducted at a freestream Mach number of 8 in standard atmospheric conditions corresponding to the altitude of 40 km.The effects of jet pressure ratio and flying angles of attack on drag reduction of the model are systematically investigated.Considering the reverse thrust generated from the counterflowing jet,the drag on the nose at hypersonic speeds could be reduced up to 66%.The maximum lift-to-drag ratio of the model is obtained at 6°;meanwhile,the counterflowing jet produces a drag reduction of 8.8%for the whole model.In addition to the nose,the counterflowing jet influences the drag by increasing the pressure drag of the model and reducing the skin friction drag of the first cone within 8°.The results show that the potential of the counterflowing jet as a means of active flow control for drag reduction is significant in the engineering application on hypersonic lifting-body vehicles.展开更多
文摘The modern high performance air vehicles are required to have extreme maneuverability,which includes the ability of controlled maneuvers at high angle of attack. However, the nonlinear and unsteady aerodynamic phenomena, such as flow separation, vortices interaction, and vortices breaking down, will occur during the flight at high angle of attack, which could induce the uncommanded motions for the air vehicles. For the high maneuverable and agile air missile, the nonlinear roll motions would occur at the high angle of attack. The present work is focused on the selfinduced nonlinear roll motion for a missile configuration and discusses the influence of the strake wings on the roll motion according to the results from free-to-roll test and PIV measurement using the models assembled with different strake wings at a = 60°. The free-to-roll results show that the model with whole strake wings(baseline), the model assembled with three strake wings(Case A)and the model assembled with two opposite strake wings(Case C) experience the spinning, while the model assembled with two adjacent strake wings(Case B), the model assembled with one strake wing(Case D) and the model with no strake wing(Case E) trim or slightly vibrate at a certain "×"rolling angle, which mean that the rolling stability can be improved by dismantling certain strake wings. The flow field results from PIV measurement show that the leeward asymmetric vortices are induced by the windward strake wings. The vortices would interact the strake wings and induce crossflow on the downstream fins to degrade the rolling stability of the model. This could be the main reason for the self-induced roll motion of the model at a = 60°.
文摘The coordinated and integrated development of regional airport group system has been identified as an important research topic in the field of air traffic management in China.However,due to the clear limitation on airspace resources and severe traffic congestion,it is necessary to further study the problem of flight schedule coordination optimization for airport clusters.We take the Beijing-Tianjin-Hebei airport Group as an example and construct an optimization model of flight schedule with the minimum adjustment and delay.The design of the implementation algorithm is proposed.As demonstrated by the simulation results,the flight delay in the Beijing-Tianjin-Hebei multi-airport system is noticeably reduced by applying both the optimization model and the algorithm proposed in this paper.
基金supported by the Aeronautics Science Foundation(No.20163252037)the China Postdoctoral Science Foundation(No.2017M610325)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20170771)Fundamental Research Funds for the Central Universities(No.NP2017202)
文摘This study takes the novel approach of using a counterflowing jet positioned on the nose of a lifting-body vehicle to explore its drag reduction effect at a range of angles of attack.Numerical studies are conducted at a freestream Mach number of 8 in standard atmospheric conditions corresponding to the altitude of 40 km.The effects of jet pressure ratio and flying angles of attack on drag reduction of the model are systematically investigated.Considering the reverse thrust generated from the counterflowing jet,the drag on the nose at hypersonic speeds could be reduced up to 66%.The maximum lift-to-drag ratio of the model is obtained at 6°;meanwhile,the counterflowing jet produces a drag reduction of 8.8%for the whole model.In addition to the nose,the counterflowing jet influences the drag by increasing the pressure drag of the model and reducing the skin friction drag of the first cone within 8°.The results show that the potential of the counterflowing jet as a means of active flow control for drag reduction is significant in the engineering application on hypersonic lifting-body vehicles.