With the continuous increase of aeroengine flight ceiling(>20 km),the thin atmosphere at high altitudes and the size effect all cause the compressor component inlet Reynolds number to decrease rapidly to a critical...With the continuous increase of aeroengine flight ceiling(>20 km),the thin atmosphere at high altitudes and the size effect all cause the compressor component inlet Reynolds number to decrease rapidly to a critical value(approximately 2.0×10^(5)),and the significant transition process on the blade/endwall surface leads to the sharp degradation of compressor performance,which seriously affects the engine fuel consumption and working stability at high altitudes.In this paper,the research progress on the internal flow mechanism and flow control methods of axial compressors at low Reynolds numbers is reviewed from the aspects of quantification and prediction of performance variation,flow loss mechanism related to separation and transition,efficient transition control and flow field organization.The development trend of the low-Reynolds-number effect of axial flow compressors is noted,and the difficulties and application prospects of aerodynamic design and efficient flow control methods for compressors under low Reynolds numbers at high altitudes are discussed.展开更多
Extreme heat and chronic water scarcity present formidable challenges to large desert-dwelling mammals.In addition to camels,antelopes within the Hippotraginae and Alcelaphinae subfamilies also exhibit remarkable phys...Extreme heat and chronic water scarcity present formidable challenges to large desert-dwelling mammals.In addition to camels,antelopes within the Hippotraginae and Alcelaphinae subfamilies also exhibit remarkable physiological and genetic specializations for desert survival.Among them,the critically endangered addax(Addax nasomaculatus)represents the most desert-adapted antelope species.However,the evolutionary and molecular mechanisms underlying desert adaptations remain largely unexplored.Herein,a high-quality genome assembly of the addax was generated to investigate the molecular evolution of desert adaptation in camels and desert antelopes.Comparative genomic analyses identified 136 genes harboring convergent amino acid substitutions implicated in crucial biological processes,including water reabsorption,fat metabolism,and stress response.Notably,a convergent R146S amino acid mutation in the prostaglandin EP2 receptor gene PTGER2 significantly reduced receptor activity,potentially facilitating large-mammal adaptation to arid environments.Lineage-specific innovations were also identified in desert antelopes,including previously uncharacterized conserved non-coding elements.Functional assays revealed that several of these elements exerted significant regulatory effects in vitro,suggesting potential roles in adaptive gene expression.Additionally,signals of introgression and variation in genetic load were observed,indicating their possible influence on desert adaptation.These findings provide insights into the sequential evolutionary processes that drive physiological resilience in arid environments and highlight the importance of convergent evolution in shaping adaptive traits in large terrestrial mammals.展开更多
The transition process within a Laminar Separation Bubble(LSB)that formed on a compressor blade surface was investigated using Large Eddy Simulations(LESs)at a Reynolds number of 1.5×10^(5) and incidence angles o...The transition process within a Laminar Separation Bubble(LSB)that formed on a compressor blade surface was investigated using Large Eddy Simulations(LESs)at a Reynolds number of 1.5×10^(5) and incidence angles of 0°,+3°,and+5°.The vortex dynamics in the separated shear layers were compared at various incidence angles and its effects on the loss generation were clarified through entropy analysis.Results showed that transition onset,which was accurately identified by the Linear Stability Theory(LST),was significantly promoted at the increased incidence angle.As such,the development of LSB was suppressed and the relative role of viscous instability played in the transition process was weakened.At the incidence angle of 0°,two-dimensional spanwise vortices detached from the blade surface and roiled up periodically,which were further stretched and eventually evolved into large-scale hairpin vortices.As time passed,the fully developed hairpin vortices broke down into small-scale eddies.Meanwhile,the flow near the wall reversely ejected into the outer separated shear layers and a sweeping process happened subsequently,forcing the separated shear layers to reattach and accelerating the generation of turbulent fluctuations.By comparison,the strength of vortex rolling-up was weakened at higher incidence angles,and the vortex pairing and breakdown of large-scale vortices were less pronounced.Therefore,the level of turbulent fluctuations that generated in the separated shear layers was reduced.Detailed entropy analysis showed that the turbulent dissipation effect related to the Reynolds shear stresses determined the largest amount of positive entropy generation,which declined to a lower level as the incidence angle increased from 0°to+5°.Correspondingly,the profile loss was reduced by 50.4%.展开更多
This study numerically investigated a single stage centrifugal compressor "Radiver" with a wedge diffuser and several tandem-designed impellers to explore the flow phenomena within the tandem impeller and th...This study numerically investigated a single stage centrifugal compressor "Radiver" with a wedge diffuser and several tandem-designed impellers to explore the flow phenomena within the tandem impeller and the potential to enhance compressor performance.The results demonstrate that tandem design and clocking fraction(ks)significantly affects the compressor performance.The compressor stage with tandem impellers of Series A of boundary layer growth interruption alone are observed to have a widely operating range but efficiency and total pressure ratio penalty compared with that of conventional impeller.The tandem impeller with at least the same impeller efficiency as the conventional design is considered as a critical design criteria so that further modification process based on the flow characteristic of tandem impeller is necessary.In order to restrain the inducer wake and exducer shock losses,parameters modification of blade angle and thickness distributions are necessary and the modified tandem impeller of Series B is obtained.The modified tandem impeller with 25%clocking arrangement shows an 8.45%stall margin increase and maintains the total pressure ratio and efficiency as the conventional design,which proves the potential of tandem impeller to improve compressor stage performance.It is noteworthy that the tandem impellers of Radiver have not shown obviously balanced exit flow field and the fundamental mechanism of stall margin extending of tandem impeller lies on the improved impeller/diffuser matching performance resulting from the incidence angle variation at diffuser inlet.展开更多
基金co-supported by the National Natural Science Foundation of China(No.52306053)the Science Center for Gas Turbine Project,China(No.P2022-B-Ⅱ-005-001)the National Science and Technology Major Project of China(No.2017-Ⅱ-0010-0024)。
文摘With the continuous increase of aeroengine flight ceiling(>20 km),the thin atmosphere at high altitudes and the size effect all cause the compressor component inlet Reynolds number to decrease rapidly to a critical value(approximately 2.0×10^(5)),and the significant transition process on the blade/endwall surface leads to the sharp degradation of compressor performance,which seriously affects the engine fuel consumption and working stability at high altitudes.In this paper,the research progress on the internal flow mechanism and flow control methods of axial compressors at low Reynolds numbers is reviewed from the aspects of quantification and prediction of performance variation,flow loss mechanism related to separation and transition,efficient transition control and flow field organization.The development trend of the low-Reynolds-number effect of axial flow compressors is noted,and the difficulties and application prospects of aerodynamic design and efficient flow control methods for compressors under low Reynolds numbers at high altitudes are discussed.
基金supported by the National Key R&D Program of China(2022YFF1000100)Shaanxi Program for Support of Top-notch Young ProfessionalsFundamental Research Funds for the Central Universities。
文摘Extreme heat and chronic water scarcity present formidable challenges to large desert-dwelling mammals.In addition to camels,antelopes within the Hippotraginae and Alcelaphinae subfamilies also exhibit remarkable physiological and genetic specializations for desert survival.Among them,the critically endangered addax(Addax nasomaculatus)represents the most desert-adapted antelope species.However,the evolutionary and molecular mechanisms underlying desert adaptations remain largely unexplored.Herein,a high-quality genome assembly of the addax was generated to investigate the molecular evolution of desert adaptation in camels and desert antelopes.Comparative genomic analyses identified 136 genes harboring convergent amino acid substitutions implicated in crucial biological processes,including water reabsorption,fat metabolism,and stress response.Notably,a convergent R146S amino acid mutation in the prostaglandin EP2 receptor gene PTGER2 significantly reduced receptor activity,potentially facilitating large-mammal adaptation to arid environments.Lineage-specific innovations were also identified in desert antelopes,including previously uncharacterized conserved non-coding elements.Functional assays revealed that several of these elements exerted significant regulatory effects in vitro,suggesting potential roles in adaptive gene expression.Additionally,signals of introgression and variation in genetic load were observed,indicating their possible influence on desert adaptation.These findings provide insights into the sequential evolutionary processes that drive physiological resilience in arid environments and highlight the importance of convergent evolution in shaping adaptive traits in large terrestrial mammals.
基金co-supported by the National Natural Science Foundation of China(No.51836008)the National Science and Technology Major Project of China(No.2017-II-0010-0024)。
文摘The transition process within a Laminar Separation Bubble(LSB)that formed on a compressor blade surface was investigated using Large Eddy Simulations(LESs)at a Reynolds number of 1.5×10^(5) and incidence angles of 0°,+3°,and+5°.The vortex dynamics in the separated shear layers were compared at various incidence angles and its effects on the loss generation were clarified through entropy analysis.Results showed that transition onset,which was accurately identified by the Linear Stability Theory(LST),was significantly promoted at the increased incidence angle.As such,the development of LSB was suppressed and the relative role of viscous instability played in the transition process was weakened.At the incidence angle of 0°,two-dimensional spanwise vortices detached from the blade surface and roiled up periodically,which were further stretched and eventually evolved into large-scale hairpin vortices.As time passed,the fully developed hairpin vortices broke down into small-scale eddies.Meanwhile,the flow near the wall reversely ejected into the outer separated shear layers and a sweeping process happened subsequently,forcing the separated shear layers to reattach and accelerating the generation of turbulent fluctuations.By comparison,the strength of vortex rolling-up was weakened at higher incidence angles,and the vortex pairing and breakdown of large-scale vortices were less pronounced.Therefore,the level of turbulent fluctuations that generated in the separated shear layers was reduced.Detailed entropy analysis showed that the turbulent dissipation effect related to the Reynolds shear stresses determined the largest amount of positive entropy generation,which declined to a lower level as the incidence angle increased from 0°to+5°.Correspondingly,the profile loss was reduced by 50.4%.
基金financial support from the National Natural Science Foundation of China(Nos.51876022 and 51836008)
文摘This study numerically investigated a single stage centrifugal compressor "Radiver" with a wedge diffuser and several tandem-designed impellers to explore the flow phenomena within the tandem impeller and the potential to enhance compressor performance.The results demonstrate that tandem design and clocking fraction(ks)significantly affects the compressor performance.The compressor stage with tandem impellers of Series A of boundary layer growth interruption alone are observed to have a widely operating range but efficiency and total pressure ratio penalty compared with that of conventional impeller.The tandem impeller with at least the same impeller efficiency as the conventional design is considered as a critical design criteria so that further modification process based on the flow characteristic of tandem impeller is necessary.In order to restrain the inducer wake and exducer shock losses,parameters modification of blade angle and thickness distributions are necessary and the modified tandem impeller of Series B is obtained.The modified tandem impeller with 25%clocking arrangement shows an 8.45%stall margin increase and maintains the total pressure ratio and efficiency as the conventional design,which proves the potential of tandem impeller to improve compressor stage performance.It is noteworthy that the tandem impellers of Radiver have not shown obviously balanced exit flow field and the fundamental mechanism of stall margin extending of tandem impeller lies on the improved impeller/diffuser matching performance resulting from the incidence angle variation at diffuser inlet.