Understanding the physics of electromagnetic pulse(EMP) emission and nozzle damage is critical for the long-term operation of laser experiments with gas targets, particularly at facilities looking to produce stable so...Understanding the physics of electromagnetic pulse(EMP) emission and nozzle damage is critical for the long-term operation of laser experiments with gas targets, particularly at facilities looking to produce stable sources of radiation at high repetition rates. We present a theoretical model of plasma formation and electrostatic charging when high-power lasers are focused inside gases. The model can be used to estimate the amplitude of gigahertz EMPs produced by the laser and the extent of damage to the gas jet nozzle. Looking at a range of laser and target properties relevant to existing high-power laser systems, we find that EMP fields of tens to hundreds of kV/m can be generated several metres from the gas jet. Model predictions are compared with measurements of EMPs, plasma formation and nozzle damage from two experiments on the VEGA-3 laser and one experiment on the Vulcan Petawatt laser.展开更多
Filamentary structures can form within the beam of protons accelerated during the interaction of an intense laser pulse with an ultrathin foil target. Such behaviour is shown to be dependent upon the formation time of...Filamentary structures can form within the beam of protons accelerated during the interaction of an intense laser pulse with an ultrathin foil target. Such behaviour is shown to be dependent upon the formation time of quasi-static magnetic field structures throughout the target volume and the extent of the rear surface proton expansion over the same period.This is observed via both numerical and experimental investigations. By controlling the intensity profile of the laser drive,via the use of two temporally separated pulses, both the initial rear surface proton expansion and magnetic field formation time can be varied, resulting in modification to the degree of filamentary structure present within the laser-driven proton beam.展开更多
The interaction of relativistically intense lasers with opaque targets represents a highly non-linear,multi-dimensional parameter space.This limits the utility of sequential 1D scanning of experimental parameters for ...The interaction of relativistically intense lasers with opaque targets represents a highly non-linear,multi-dimensional parameter space.This limits the utility of sequential 1D scanning of experimental parameters for the optimization of secondary radiation,although to-date this has been the accepted methodology due to low data acquisition rates.High repetition-rate(HRR)lasers augmented by machine learning present a valuable opportunity for efficient source optimization.Here,an automated,HRR-compatible system produced high-fidelity parameter scans,revealing the influence of laser intensity on target pre-heating and proton generation.A closed-loop Bayesian optimization of maximum proton energy,through control of the laser wavefront and target position,produced proton beams with equivalent maximum energy to manually optimized laser pulses but using only 60%of the laser energy.This demonstration of automated optimization of laser-driven proton beams is a crucial step towards deeper physical insight and the construction of future radiation sources.展开更多
We present the development and characterization of a high-stability,multi-material,multi-thickness tape-drive target for laser-driven acceleration at repetition rates of up to 100 Hz.The tape surface position was meas...We present the development and characterization of a high-stability,multi-material,multi-thickness tape-drive target for laser-driven acceleration at repetition rates of up to 100 Hz.The tape surface position was measured to be stable on the sub-micrometre scale,compatible with the high-numerical aperture focusing geometries required to achieve relativistic intensity interactions with the pulse energy available in current multi-Hz and near-future higher repetition-rate lasers(>kHz).Long-term drift was characterized at 100 Hz demonstrating suitability for operation over extended periods.The target was continuously operated at up to 5 Hz in a recent experiment for 70,000 shots without intervention by the experimental team,with the exception of tape replacement,producing the largest data-set of relativistically intense laser–solid foil measurements to date.This tape drive provides robust targetry for the generation and study of high-repetitionrate ion beams using next-generation high-power laser systems,also enabling wider applications of laser-driven proton sources.展开更多
基金funded by the European Union via the Euratom Research and Training Programme(Grant Agreement No.101052200–EUROfusion)funded by MCIN/AEI/10.13039/501100011033/FEDER+4 种基金funded by the European Unionsupport from the LIGHT S&T Graduate Program(PIA3Investment for the Future Program,ANR-17-EURE-0027)funding from the European Union’s Horizon 2020 research and innovation programme through the European IMPULSE project under grant agreement No.871161 and from LASERLAB-EUROPE V under grant agreement No.871124co-financed by the Polish Ministry of Science and Higher Education within the framework of the scientific financial resources for 2021–2022 under contract No.5205/CELIA/2021/0(project CNRS No.239915)the financial support of the Id Ex University of Bordeaux/Grand Research Program‘GPR LIGHT’
文摘Understanding the physics of electromagnetic pulse(EMP) emission and nozzle damage is critical for the long-term operation of laser experiments with gas targets, particularly at facilities looking to produce stable sources of radiation at high repetition rates. We present a theoretical model of plasma formation and electrostatic charging when high-power lasers are focused inside gases. The model can be used to estimate the amplitude of gigahertz EMPs produced by the laser and the extent of damage to the gas jet nozzle. Looking at a range of laser and target properties relevant to existing high-power laser systems, we find that EMP fields of tens to hundreds of kV/m can be generated several metres from the gas jet. Model predictions are compared with measurements of EMPs, plasma formation and nozzle damage from two experiments on the VEGA-3 laser and one experiment on the Vulcan Petawatt laser.
基金supported by EPSRC(grants EP/J003832/1,EP/R006202/1,EP/P007082/1 and EP/K022415/1)the European Unions Horizon 2020 research and innovation program(grant agreement No.654148 Laserlab-Europe)EPSRC grant EP/G054940/1
文摘Filamentary structures can form within the beam of protons accelerated during the interaction of an intense laser pulse with an ultrathin foil target. Such behaviour is shown to be dependent upon the formation time of quasi-static magnetic field structures throughout the target volume and the extent of the rear surface proton expansion over the same period.This is observed via both numerical and experimental investigations. By controlling the intensity profile of the laser drive,via the use of two temporally separated pulses, both the initial rear surface proton expansion and magnetic field formation time can be varied, resulting in modification to the degree of filamentary structure present within the laser-driven proton beam.
基金support from the UK STFC grants ST/V001639/1 with the XFEL Physical Sciences Hub and ST/P002021/1the UK EPSRC grants EP/V049577/1 and EP/R006202/1+5 种基金as well as the U.S.DOE Office of Science,Fusion Energy Sciences under FWP No.100182in part by the National Science Foundation under Grant No.1632708 and Award No.PHY–1903414M.J.V.S.acknowledges support from the Royal Society URFR1221874support from the DOE NNSA SSGF program under DE-NA0003960support from the U.S.DOE grant DESC0016804support from the project‘Advanced research using high-intensity laser-produced photons and particles’(CZ.02.1.01/0.0/0.0/16_019/0000789)from the European Regional Development Fund(ADONIS)。
文摘The interaction of relativistically intense lasers with opaque targets represents a highly non-linear,multi-dimensional parameter space.This limits the utility of sequential 1D scanning of experimental parameters for the optimization of secondary radiation,although to-date this has been the accepted methodology due to low data acquisition rates.High repetition-rate(HRR)lasers augmented by machine learning present a valuable opportunity for efficient source optimization.Here,an automated,HRR-compatible system produced high-fidelity parameter scans,revealing the influence of laser intensity on target pre-heating and proton generation.A closed-loop Bayesian optimization of maximum proton energy,through control of the laser wavefront and target position,produced proton beams with equivalent maximum energy to manually optimized laser pulses but using only 60%of the laser energy.This demonstration of automated optimization of laser-driven proton beams is a crucial step towards deeper physical insight and the construction of future radiation sources.
基金Special thanks go to the staff at the Central Laser Facility who provided laser operational support,mechanical and electrical support and computational and administrative support throughout the experiment.We acknowledge funding from UK STFC,Grant Nos.ST/P002021/1 and ST/V001639/1U.S.DOE Office of Science,Fusion Energy Sciences under FWP No.100182+2 种基金in part by the National Science Foundation under Grant No.1632708G.D.G.acknowledges support from the DOE NNSA SSGF program under DE-NA0003960This work has been partially supported by the project Advanced Research Using High-intensity Laser-produced Photons and Particles(CZ.02.1.01/0.0/0.0/16_019/0000789)from the European Regional Development Fund(ADONIS).
文摘We present the development and characterization of a high-stability,multi-material,multi-thickness tape-drive target for laser-driven acceleration at repetition rates of up to 100 Hz.The tape surface position was measured to be stable on the sub-micrometre scale,compatible with the high-numerical aperture focusing geometries required to achieve relativistic intensity interactions with the pulse energy available in current multi-Hz and near-future higher repetition-rate lasers(>kHz).Long-term drift was characterized at 100 Hz demonstrating suitability for operation over extended periods.The target was continuously operated at up to 5 Hz in a recent experiment for 70,000 shots without intervention by the experimental team,with the exception of tape replacement,producing the largest data-set of relativistically intense laser–solid foil measurements to date.This tape drive provides robust targetry for the generation and study of high-repetitionrate ion beams using next-generation high-power laser systems,also enabling wider applications of laser-driven proton sources.