This study describes methods for predicting and classifying voltage-gated ion channels. Firstly, a standard support vector machine (SVM) method was developed for predicting ion channels by using amino acid compositi...This study describes methods for predicting and classifying voltage-gated ion channels. Firstly, a standard support vector machine (SVM) method was developed for predicting ion channels by using amino acid composition and dipeptide composition, with an accuracy of 82.89% and 85.56%, respectively. The accuracy of this SVM method was improved from 85.56% to 89.11% when combined with PSIBLAST similarity search. Then we developed an SVM method for classifying ion channels (potassium, sodium, calcium, and chloride) by using dipeptide composition and achieved an overall accuracy of 96.89%. We further achieved a classification accuracy of 97.78% by using a hybrid method that combines dipeptidebased SVM and hidden Markov model methods. A web server VGIchan has been developed for predicting and classifying voltage-gated ion channels using the above approaches. VGIchan is freely available at www.imtech.res.in/raghava/vgichan/.展开更多
This study describes a method for predicting and classifying oxygen-binding proteins. Firstly, support vector machine (SVM) modules were developed using amino acid composition and dipeptide composition for predictin...This study describes a method for predicting and classifying oxygen-binding proteins. Firstly, support vector machine (SVM) modules were developed using amino acid composition and dipeptide composition for predicting oxygen-binding proteins, and achieved maximum accuracy of 85.5% and 87.8%, respectively. Secondly, an SVM module was developed based on amino acid composition, classifying the predicted oxygen-binding proteins into six classes with accuracy of 95.8%, 97.5%, 97.5%, 96.9%, 99.4%, and 96.0% for erythrocruorin, hemerythrin, hemocyanin, hemoglobin, leghemoglobin, and myoglobin proteins, respectively. Finally, an SVM module was developed using dipeptide composition for classifying the oxygen-binding proteins, and achieved maximum accuracy of 96.1%, 98.7%, 98.7%, 85.6%, 99.6%, and 93.3% for the above six classes, respectively. All modules were trained and tested by five-fold cross validation. Based on the above approach, a web server Oxypred was developed for predicting and classifying oxygen-binding proteins (available from http://www.imtech.res.in/raghava/oxypred/).展开更多
文摘This study describes methods for predicting and classifying voltage-gated ion channels. Firstly, a standard support vector machine (SVM) method was developed for predicting ion channels by using amino acid composition and dipeptide composition, with an accuracy of 82.89% and 85.56%, respectively. The accuracy of this SVM method was improved from 85.56% to 89.11% when combined with PSIBLAST similarity search. Then we developed an SVM method for classifying ion channels (potassium, sodium, calcium, and chloride) by using dipeptide composition and achieved an overall accuracy of 96.89%. We further achieved a classification accuracy of 97.78% by using a hybrid method that combines dipeptidebased SVM and hidden Markov model methods. A web server VGIchan has been developed for predicting and classifying voltage-gated ion channels using the above approaches. VGIchan is freely available at www.imtech.res.in/raghava/vgichan/.
文摘This study describes a method for predicting and classifying oxygen-binding proteins. Firstly, support vector machine (SVM) modules were developed using amino acid composition and dipeptide composition for predicting oxygen-binding proteins, and achieved maximum accuracy of 85.5% and 87.8%, respectively. Secondly, an SVM module was developed based on amino acid composition, classifying the predicted oxygen-binding proteins into six classes with accuracy of 95.8%, 97.5%, 97.5%, 96.9%, 99.4%, and 96.0% for erythrocruorin, hemerythrin, hemocyanin, hemoglobin, leghemoglobin, and myoglobin proteins, respectively. Finally, an SVM module was developed using dipeptide composition for classifying the oxygen-binding proteins, and achieved maximum accuracy of 96.1%, 98.7%, 98.7%, 85.6%, 99.6%, and 93.3% for the above six classes, respectively. All modules were trained and tested by five-fold cross validation. Based on the above approach, a web server Oxypred was developed for predicting and classifying oxygen-binding proteins (available from http://www.imtech.res.in/raghava/oxypred/).