In this work,we designed a novel NiCoCr-based medium-entropy alloy(MEA)strengthened by coher-ent L12-nanoparticles,i.e.,(NiCoCr)92 Al 6 Ta 2(at.%).The strengthening and deformation mechanisms of the material and the c...In this work,we designed a novel NiCoCr-based medium-entropy alloy(MEA)strengthened by coher-ent L12-nanoparticles,i.e.,(NiCoCr)92 Al 6 Ta 2(at.%).The strengthening and deformation mechanisms of the material and the coarsening kinetics of the coherent precipitates were systematically investigated.The results indicated that giant precipitation hardening and its synergy with other strengthening contributors confer on the aged material a yield strength as high as 1.0 GPa.Moreover,a unique particle-features-dependent plasticity mechanism was revealed in this alloy.That is,the alloy with a lower volume frac-tion,denser distribution,and finer particles mainly deformed by dislocation planar slip,otherwise,stack-faults-mediated plasticity was favored,rationalized by the cooperative/competitive effect of stack-fault energy,spatial confinement,and applied stress.Furthermore,the coarsening behavior of precipitate fol-lowed a modified Lifshitz-Slyozov-Wagner(LSW)model,and the nanoparticles displayed remarkably su-perior thermal stability compared to most traditional superalloys and reported multicomponent alloys.The superb coarsening resistance of precipitate originated from the coupled effect of intrinsic sluggish diffusion in multi-principal alloys and the dual-roles of Ta species as a precipitate stabilizer.This work provides a new pathway to develop strong-yet-ductile multicomponent alloys as promising candidates for high-temperature applications.展开更多
Alloying is an effective strategy to tailor microstructure and mechanical properties of metallic materials to overcome the strength-ductility trade-off dilemma.In this work,we combined a novel alloy design principle,i...Alloying is an effective strategy to tailor microstructure and mechanical properties of metallic materials to overcome the strength-ductility trade-off dilemma.In this work,we combined a novel alloy design principle,i.e.harvesting pronounced solid solution hardening(SSH)based on the misfit volumes engineering,and simultaneously,architecting the ductile matrix based on the valence electron concentrations(VEC)criterion,to fulfill an excellent strength-ductility synergy for the newly emerging high/medium-entropy alloys(HEAs/MEAs).Based on this strategy,Al/Ta co-doping within NiCoCr MEA leads to an efficient synthetic approach,that is minor Al/Ta co-doping not only renders significantly enhanced strength with notable SSH effect and ultrahigh strain-hardening capability,but also sharply refines grains and induces abnormal twinning behaviors of(NiCoCr)_(92)Al_(6)Ta_(2) MEA.Compared with the partially twinned NiCoCr MEA,the yield strength(σy)and ultimate tensile strength(σUTS)of fully twinned Al/Ta-containing MEA were increased by~102%to~600 MPa and~35%to~1000 MPa,respectively,along with good ductility beyond 50%.Different from the NiCoCr MEA with deformation twins(DTs)/stacking faults(SFs)dominated plasticity,the extraordinary strain-hardening capability of the solute-hardened(NiCoCr)_(92)Al_(6)Ta_(2) MEA,deactivated deformation twinning,originates from the high density of dislocation walls,microbands and abundance of SFs.The abnormal twinning behaviors,i.e.,prevalence of annealing twins(ATs)but absence of DTs in(NiCoCr)_(92)Al_(6)Ta_(2) MEA,are explained in terms of the relaxation of grain boundaries(for ATs)and the twinning mechanism transition(for DTs),respectively.展开更多
It is generally considered that the Al3Sc nanoprecipitates are highly thermal stable,mainly due to quite slow Sc diffusion in theα-Al matrix.In this paper,we demonstrate in an Al-Cu-Sc alloy that the Cu atoms have du...It is generally considered that the Al3Sc nanoprecipitates are highly thermal stable,mainly due to quite slow Sc diffusion in theα-Al matrix.In this paper,we demonstrate in an Al-Cu-Sc alloy that the Cu atoms have dual effect on the coarsening of Al3Sc nanoprecipitates.On the one hand,the Cu atoms with high diffusivity tend to accelerate the Al3Sc coarsening,which results from the Cu-promoted Sc diffusion.On the other hand,some Cu atoms will segregate at the Al3Sc/matrix interface,which further stabilizes the Al3Sc nanoprecipitates by reducing the interfacial energy.Competition between these two effects is tailored by temperature,which rationalizes the experimental findings that the coarsening kinetics of Al3Sc nanoprecipitate is greatly boosted at 300℃-overaging while significantly suppressed at 400℃-overaging.展开更多
Molybdenum(Mo) alloys with different La_(2)O_(3)particle additions(0.6,0.9,1.5 wt.%) were prepared by powder metallurgy to investigate the effect of La_(2)O_(3)particles on microstructural evolution and creep behavior...Molybdenum(Mo) alloys with different La_(2)O_(3)particle additions(0.6,0.9,1.5 wt.%) were prepared by powder metallurgy to investigate the effect of La_(2)O_(3)particles on microstructural evolution and creep behavior of the alloy.Pure Mo,annealed at 1500℃ for 1 h,presented a fully recrystallized microstructure characterized by equiaxed grains.The alloys doped with La_(2)O_(3)particles(Mo-La_(2)O_(3)alloys),on the other hand,exhibited fibrous grains elongated in the rolling direction of the plate.In contrast to the shape of the grains,the average grain size of the alloys was found to be insensitive to the addition of La_(2)O_(3)particles.Nanosized La_(2)O_(3)particles with diameters ranging from 65 to 75 nm were distributed within the grain interior.Tensile creep tests showed that dislocation creep was the predominant deformation mode at intermediate creep rate(10^(-7)s^(-1)-10^(-4)s^(-1)) in the present alloys.The creep stress exponent and activation energy were found to decrease with increasing temperature,particularly within the low creep rate regime(<10^(-7)s^(-1)).The Mo-La_(2)O_(3)alloys exhibited remarkably greater apparent stress exponent and activation energy than pure Mo.A creep constitutive model based on the interaction between particles and dislocations was utilized to rationalize the nanoparticle-improved creep behavior.It was demonstrated that low relaxed efficiency of dislocation line energy,which is responsible for an enhanced climb resistance of dislocations,is the major creep strengthening mechanism in the Mo-La_(2)O_(3)alloys.In addition,the area reduction and creep fracture mode of the Mo-La_(2)O_(3)alloys were found to be a function of the creep rate and temperature,which can be explained by the effect of the two parameters on the creep and fracture mechanisms.展开更多
To further improve the service performance of Zr-2.5Nb alloy worked as pressure tubes in pressurized heavy water reactors,more investigation about the microstructure and thermomechanical processing route of Zr-2.5Nb a...To further improve the service performance of Zr-2.5Nb alloy worked as pressure tubes in pressurized heavy water reactors,more investigation about the microstructure and thermomechanical processing route of Zr-2.5Nb alloy need to be conducted.In this work,a hetero-structured Zr-2.5Nb alloy was prepared by applying a novel technique.Microstructure analysis reveals that the alloy exhibits a grain sizedependent martensite substructure transition during post-rolling quenching.The hetero-structure consists of equiaxed primaryαgrains and the lamellae groups containing both parallelα’dislocation martensite andα’twin martensite.Compared with the previously reported Zr-Nb alloys,the present Zr-2.5Nb alloys manifest the highest yield strength(∼710 MPa),together with a high ultimate tensile strength(∼844 MPa)and good ductility(∼17.1%).The enhanced mechanical properties are found to arise from the properly controlled fraction/size of the two types of martensite,which not only significantly strengthens the alloy but also contributes to a stronger strain hardening.A model based on the grain-size-dependent critical resolved shear stress for dislocation slip and twinning has been proposed to explain theα’martensite substructures transition at a critical grain size dc=3.3μm.Below this size,the critical resolved shear stress(CRSS)for twinning is higher than that for the<c+a>slip.Thus,theα’dislocation martensite is more favorable to form.Otherwise,theα’twin martensite would exhibit a high activity.The present work indicates that making use of the grain size-dependent martensite transformation to tailor the heterostructure in Zr alloys is an effective strategy to overcome the strength–ductility trade-off in the material.展开更多
How to design ultra-strong,light-weight Cu alloys is a long-term pursuit in materials community,which is technically superior and cost-effective for their promising energy-saving applications.In this work,we prepared ...How to design ultra-strong,light-weight Cu alloys is a long-term pursuit in materials community,which is technically superior and cost-effective for their promising energy-saving applications.In this work,we prepared Cu-Mg alloyed thin films to study light element Mg alloying effects on the microstructure,hardness and strain rate sensitivity(SRS) of nanocrystalline Cu thin films.In the studied Mg concentrationrange spanning from 0 at.% to 16.8 at.%,both the grain size and the twin spacing decrease monotonously with increasing Mg composition while Cu-2.8 at.% Mg sample has the highest twin fraction of ~75%.A combined strengthening model was employed to quantify the Mg concentration-dependent hardness of nanotwinned(NT) Cu-Mg thin films,in which the grain/twin boundary facilitates strengthening while the solute Mg atoms induce softening.Both the constant rate of loading tests and the nanoindentation creep tests uncover that compared with pure Cu samples,the NT Cu-Mg thin films manifest much lower SRS,particularly in the creep tests,owing to the activation of dynamic strain aging effects.展开更多
The chemical boundaries inside the ultrafine spinodal decomposition structure in metastable β-Ti alloys can act as a new feature to architect heterogeneous microstructures.In this work,we combined two semi-empirical ...The chemical boundaries inside the ultrafine spinodal decomposition structure in metastable β-Ti alloys can act as a new feature to architect heterogeneous microstructures.In this work,we combined two semi-empirical methods,i.e.,the d-electron theory and the e/a electron concentration,to achieve the spinodal decomposition structure in a metastable β Ti-4.5Al-4.5Mo-7V-1.5Cr-1.5Zr(wt.%)alloy.Utilizing the spinodal decomposition structure,the aged Ti-Al-Mo-V-Cr-Zr alloys showed multi-architectured α precipitates spanning from micron-scale(primary α_(p))to nano-scale(secondary α_(s))that were uniformly distributed in the β-domains.Being compared with the forged sample,the multi-scale heterogeneous microstructure enables the aged β-Ti alloy to have ultra-high strength(yield strength ~1366 MPa and ultimate tensile strength ~1424 MPa)and an appreciable ductility(~9.3%).Strengthening models were proposed for the present alloys to estimate the contribution of various microstructural features to the measured yield strength.While the solid solution strengthening,β-spinodal strengthening,and back stress strengthening made comparable contributions to the strength of the forged alloy,the back stress strengthening was the predominant strengthening effect in the aged alloy.This alloy design approach based on chemical boundary engineering to construct multi-architectured α precipitates provided an effective strategy for achieving an outstanding combination of ultra-high strength and ductility in metastable β-Ti alloys.展开更多
In this work,we prepare transformable HEA/Cu nanolaminates(NLs)with equal individual layer thick-ness(h)by the magnetron sputtering technique,i.e.,Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu and Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu,an...In this work,we prepare transformable HEA/Cu nanolaminates(NLs)with equal individual layer thick-ness(h)by the magnetron sputtering technique,i.e.,Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu and Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu,and comparatively study He-ion irradiation effects on their microstructure and mechanical properties.It ap-pears that the as-deposited HEA/Cu NLs manifest two size h-dependent hardness regimes(i.e.,increased hardness at small h and hardness plateau at large h),while the He-implanted ones exhibit monotonically increased hardness.Contrary to the fashion that smaller h renders less irradiation hardening in bimetal NLs,the Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs manifest the trend that smaller h leads to greater irradiation hard-ening.By contrast,the Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu NLs exhibit the maximum irradiation hardening at a critical h=50 nm.Below this critical size,smaller h results in lower radiation hardening(similar to bimetal NLs),while above this size,smaller h results in greater radiation hardening(similar to Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs).Moreover,these transformable HEA/Cu NLs display inverse h-dependent strain rate sensitivity(SRS m)before and after He-ion irradiation.Nevertheless,compared with as-deposited samples,the irradi-ated Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs display reduced SRS,while the irradiated Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu NLs dis-play enhanced SRS.Such unusual size-dependent irradiation strengthening and inverse h effect on SRS in irradiated samples were rationalized by considering the blocking effects of He bubbles on dislocation nucleation and motion,i.e.,dislocations shearing or bypassing He bubbles.展开更多
In line with the developing trend in the 90’s [1] and the requirements of the power dispatching center of BEPB(Bejing Electric Power Bureau),the open and distributed EMS/DMS SD-6000E is developed as the master statio...In line with the developing trend in the 90’s [1] and the requirements of the power dispatching center of BEPB(Bejing Electric Power Bureau),the open and distributed EMS/DMS SD-6000E is developed as the master station of BEPB project. Because the power system of BEPB, either the capacity of peak load, or the quantity of substations under monitoring and number of subsidiary control centers in hierarchical structure, is the largest district power system in China, in view of this situation and the significance of capital power supply, the comprehensive dispatch automation system with high reliability was planned, the integrated EMS/DMS SD6000E with multi-screen video graphic systems has been developed. This project was planned from December of 1992, started on April 30,1996, and will be completed by the end of 1998.This project is the largest EMS/DMS project in China up to now.The overview of this project, including the comprehensive requirement of EMS/DMS from BEPB, the hardware configuration design of EMS master station, the software design of SD-6000E, the integrated multi-screen video graphic systems with EMS/DMS is described in this paper. The implementation of this project is briefly described as well.展开更多
First evidence of a structure in the J/ψΛinvariant mass distribution is obtained from an amplitude analysis of■b^(-)J/ψΛK^(-)decays.The observed structure is consistent with being due to a charmonium pentaquark w...First evidence of a structure in the J/ψΛinvariant mass distribution is obtained from an amplitude analysis of■b^(-)J/ψΛK^(-)decays.The observed structure is consistent with being due to a charmonium pentaquark with strangeness with a significance of 3.1r including systematic uncertainties and lookelsewhere effect.Its mass and width are determined to be 4458:8±2:9t4:7-1:1 MeV and 17:3±6:5t8:0-5:7 MeV,respectively,where the quoted uncertainties are statistical and systematic.The structure is also consistent with being due to two resonances.In addition,the narrow excited■^(-)states,N■(1690)and■(1820),are seen for the first time in a■b^(-)decay,and their masses and widths are measured with improved precision.The analysis is performed using pp collision data corresponding to a total integrated luminosity of 9 fb^(-1),collected with the LHCb experiment at centre-of-mass energies of 7,8 and 13 TeV.展开更多
A search for the doubly charmed baryon ■^+cc is performed through its decay to theΛ^+c K^-π^+ final state,using proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7,8 and 13...A search for the doubly charmed baryon ■^+cc is performed through its decay to theΛ^+c K^-π^+ final state,using proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7,8 and 13 TeV.The data correspond to a total integrated luminosity of 9 fb^-1.No significant signal is observed in the mass range from 3.4 to 3.8 GeV/c^2.Upper limits are set at 95%credibility level on the ratio of the ■^+cc production cross-section times the branching fraction to that ofΛ^+c and ■^++cc baryons.The limits are determined as functions of the ■^+cc mass for different lifetime hypotheses,in the rapidity range from 2.0 to 4.5 and the transverse momentum range from 4 to 15 GeV/c.展开更多
The production of ■baryons in proton-proton collisions at a centre-of-mass energy of √s = 13 TeV is measured in the transverse-momentum range 4<pT<15GeV/c and the rapidity range2.0<y<4.5.The data used in...The production of ■baryons in proton-proton collisions at a centre-of-mass energy of √s = 13 TeV is measured in the transverse-momentum range 4<pT<15GeV/c and the rapidity range2.0<y<4.5.The data used in this measurement correspond to an integrated luminosity of 1.7fb^-1,recorded by the LHCb experiment during 2016.The ratio of the ■ production cross-section times the branching fraction of the■→∧^+cK^-π^+ π^+decay relative to the prompt ∧^+c production cross-section is found to be(2.22±0.27±0.29)×10^-4,assuming the central value of the measured lifetime,where the first uncertainty is statistical and the second systematic.展开更多
A first search for the Ξ_(bc)^(+)J/ψΞ_(c)^(+) decay is performed by the LHCb experiment with a data sample of proton-proton collisions, corresponding to an integrated luminosity of 9 fb−1 recorded at centre-of-mass...A first search for the Ξ_(bc)^(+)J/ψΞ_(c)^(+) decay is performed by the LHCb experiment with a data sample of proton-proton collisions, corresponding to an integrated luminosity of 9 fb−1 recorded at centre-of-mass energies of 7, 8, and 13 TeV. Two peaking structures are seen with a local (global) significance of 4.3(2.8) and 4.1(2.4) standard deviations at masses of 6571 and 6694 MeV/c2, respectively. Upper limits are set on the Ξ+bc baryon production cross-section times the branching fraction relative to that of the B+c→J/ψD+s decay at centre-of-mass energies of 8 and 13 TeV, in the Ξ+bc and in the B+c rapidity and transverse-momentum ranges from 2.0 to 4.5 and 0 to 20GeV/c, respectively. Upper limits are presented as a function of the Ξ+bc mass and lifetime.展开更多
The first search for the doubly heavyΩ^(0)_(bc)baryon and a search for the E^(0)_(bc)baryon are performed using pp collision data collected via the LHCb experiment from 2016 to 2018 at a centre-of-mass energy of 13 T...The first search for the doubly heavyΩ^(0)_(bc)baryon and a search for the E^(0)_(bc)baryon are performed using pp collision data collected via the LHCb experiment from 2016 to 2018 at a centre-of-mass energy of 13 TeV,corresponding to an integrated luminosity of 5.2 fb^(-1).The baryons are reconstructed via their decays to Λ^(+)_(c)π^(-)and E^(+)_(c)π^(-).No significant excess is fbund for invariant masses between 6700 and 7300 MeV/c^(2),in a rapidity range from 2.0 to 4.5 and a transverse momentum range from 2 to 20 MeV/c.Upper limits are set on the ratio of the Ω^(0)_(bc)and E^(0)_(bc)production cross-section times the branching fraction to Λ^(+)_(c)π^(-)(E^(+)_(c)π^(-))relative to that of the Λ^(0)_(b)(E^(0)_(b))baryon,for different lifetime hypotheses,at 95%confidence level.The upper limits range from 0.5 x 10^(-4)to 2.5 x 10^(-4)for theΩ^(0)_(bc)→Λ^(+)_(c)π^(-)(E^(0)_(bc)→Λ^(+)_(c)π^(-))decay,and from 1.4x 10^(-3)to 6.9 x 10^(-3)for theΩ^(0)_(bc)→E^(+)_(c)π^(-)(E^(0)_(bc)→E^(+)_(c)π^(-))decay,depending on the considered mass and lifetime of theΩ^(0)_(bc)(E^(0)_(bc))baryon.展开更多
A search for the rare decays W^(+)→D_(s)^(+)γ and Z→D0γis performed using proton-proton collision data collected by the LHCb experiment at a centre-of-mass energy of 13TeV,corresponding to an integrated luminosity...A search for the rare decays W^(+)→D_(s)^(+)γ and Z→D0γis performed using proton-proton collision data collected by the LHCb experiment at a centre-of-mass energy of 13TeV,corresponding to an integrated luminosity of 2.0fb−1.No significant signal is observed for either decay mode and upper limits on their branching fractions are set using W^(+)→D_(s)^(+)γ and Z→μ+μ−decays as normalization channels.The upper limits are 6.5×10^(−4) and 2.1×10^(−3) at 95% confidence level for the W^(+)→D_(s)^(+)γ and Z→D^(0)γ decay modes,respectively.This is the first reported search for the Z→D^(0)γ decay,while the upper limit on the W+→D+sγbranching fraction improves upon the previous best limit.展开更多
A search for the rare decay B^(0)→J/ψФis performed using Pp collision data collected with the LHCb dete-ctor at centre-of-mass energies of 7,8 and 13 TeV,corresponding to an integrated luminosity of9 fb.No signific...A search for the rare decay B^(0)→J/ψФis performed using Pp collision data collected with the LHCb dete-ctor at centre-of-mass energies of 7,8 and 13 TeV,corresponding to an integrated luminosity of9 fb.No significant signal of the decay is observed and an upper limitof 1.1x 10^(-7)at 90%confidence level is set on the branching fraction.展开更多
基金supported by the National Natural Science Foundation of China(Nos.92163201,U2067219,51722104,51790482,and 51761135031)the National Key Research and Devel-opment Program of China(No.2017YFA0700701)+1 种基金the 111 Project 2.0 of China(No.BP2018008)the Fundamental Research Funds for the Central Universities(No.xtr022019004).
文摘In this work,we designed a novel NiCoCr-based medium-entropy alloy(MEA)strengthened by coher-ent L12-nanoparticles,i.e.,(NiCoCr)92 Al 6 Ta 2(at.%).The strengthening and deformation mechanisms of the material and the coarsening kinetics of the coherent precipitates were systematically investigated.The results indicated that giant precipitation hardening and its synergy with other strengthening contributors confer on the aged material a yield strength as high as 1.0 GPa.Moreover,a unique particle-features-dependent plasticity mechanism was revealed in this alloy.That is,the alloy with a lower volume frac-tion,denser distribution,and finer particles mainly deformed by dislocation planar slip,otherwise,stack-faults-mediated plasticity was favored,rationalized by the cooperative/competitive effect of stack-fault energy,spatial confinement,and applied stress.Furthermore,the coarsening behavior of precipitate fol-lowed a modified Lifshitz-Slyozov-Wagner(LSW)model,and the nanoparticles displayed remarkably su-perior thermal stability compared to most traditional superalloys and reported multicomponent alloys.The superb coarsening resistance of precipitate originated from the coupled effect of intrinsic sluggish diffusion in multi-principal alloys and the dual-roles of Ta species as a precipitate stabilizer.This work provides a new pathway to develop strong-yet-ductile multicomponent alloys as promising candidates for high-temperature applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.51722104,51790482,51621063 and 51625103)the 111 Project 2.0 of China(PB2018008)+1 种基金the National Key Research and Development Program of China(2017YFA0700701)the Fundamental Research Funds for the Central Universities for part of financial support(xtr022019004)。
文摘Alloying is an effective strategy to tailor microstructure and mechanical properties of metallic materials to overcome the strength-ductility trade-off dilemma.In this work,we combined a novel alloy design principle,i.e.harvesting pronounced solid solution hardening(SSH)based on the misfit volumes engineering,and simultaneously,architecting the ductile matrix based on the valence electron concentrations(VEC)criterion,to fulfill an excellent strength-ductility synergy for the newly emerging high/medium-entropy alloys(HEAs/MEAs).Based on this strategy,Al/Ta co-doping within NiCoCr MEA leads to an efficient synthetic approach,that is minor Al/Ta co-doping not only renders significantly enhanced strength with notable SSH effect and ultrahigh strain-hardening capability,but also sharply refines grains and induces abnormal twinning behaviors of(NiCoCr)_(92)Al_(6)Ta_(2) MEA.Compared with the partially twinned NiCoCr MEA,the yield strength(σy)and ultimate tensile strength(σUTS)of fully twinned Al/Ta-containing MEA were increased by~102%to~600 MPa and~35%to~1000 MPa,respectively,along with good ductility beyond 50%.Different from the NiCoCr MEA with deformation twins(DTs)/stacking faults(SFs)dominated plasticity,the extraordinary strain-hardening capability of the solute-hardened(NiCoCr)_(92)Al_(6)Ta_(2) MEA,deactivated deformation twinning,originates from the high density of dislocation walls,microbands and abundance of SFs.The abnormal twinning behaviors,i.e.,prevalence of annealing twins(ATs)but absence of DTs in(NiCoCr)_(92)Al_(6)Ta_(2) MEA,are explained in terms of the relaxation of grain boundaries(for ATs)and the twinning mechanism transition(for DTs),respectively.
基金financially supported by the National Natural Science Foundation of China(Nos.51621063,51625103,51722104,51790482,51761135031 and 51871033)the National Key Research and Development Program of China(No.2016YFB0700403)+1 种基金the 111 Project of China(No.BP2018008)supported by the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies.
文摘It is generally considered that the Al3Sc nanoprecipitates are highly thermal stable,mainly due to quite slow Sc diffusion in theα-Al matrix.In this paper,we demonstrate in an Al-Cu-Sc alloy that the Cu atoms have dual effect on the coarsening of Al3Sc nanoprecipitates.On the one hand,the Cu atoms with high diffusivity tend to accelerate the Al3Sc coarsening,which results from the Cu-promoted Sc diffusion.On the other hand,some Cu atoms will segregate at the Al3Sc/matrix interface,which further stabilizes the Al3Sc nanoprecipitates by reducing the interfacial energy.Competition between these two effects is tailored by temperature,which rationalizes the experimental findings that the coarsening kinetics of Al3Sc nanoprecipitate is greatly boosted at 300℃-overaging while significantly suppressed at 400℃-overaging.
基金supported by the National Natural Science Foundation of China (Grant Nos.,51801147,and 51901173)supported by the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies。
文摘Molybdenum(Mo) alloys with different La_(2)O_(3)particle additions(0.6,0.9,1.5 wt.%) were prepared by powder metallurgy to investigate the effect of La_(2)O_(3)particles on microstructural evolution and creep behavior of the alloy.Pure Mo,annealed at 1500℃ for 1 h,presented a fully recrystallized microstructure characterized by equiaxed grains.The alloys doped with La_(2)O_(3)particles(Mo-La_(2)O_(3)alloys),on the other hand,exhibited fibrous grains elongated in the rolling direction of the plate.In contrast to the shape of the grains,the average grain size of the alloys was found to be insensitive to the addition of La_(2)O_(3)particles.Nanosized La_(2)O_(3)particles with diameters ranging from 65 to 75 nm were distributed within the grain interior.Tensile creep tests showed that dislocation creep was the predominant deformation mode at intermediate creep rate(10^(-7)s^(-1)-10^(-4)s^(-1)) in the present alloys.The creep stress exponent and activation energy were found to decrease with increasing temperature,particularly within the low creep rate regime(<10^(-7)s^(-1)).The Mo-La_(2)O_(3)alloys exhibited remarkably greater apparent stress exponent and activation energy than pure Mo.A creep constitutive model based on the interaction between particles and dislocations was utilized to rationalize the nanoparticle-improved creep behavior.It was demonstrated that low relaxed efficiency of dislocation line energy,which is responsible for an enhanced climb resistance of dislocations,is the major creep strengthening mechanism in the Mo-La_(2)O_(3)alloys.In addition,the area reduction and creep fracture mode of the Mo-La_(2)O_(3)alloys were found to be a function of the creep rate and temperature,which can be explained by the effect of the two parameters on the creep and fracture mechanisms.
基金financially supported by the National Natural Science Foundation of China(Nos.92163201,U2067219,51722104,51790482,51801147,and 51761135031)the National Key Research and Development Program of China(No.2017YFA0700701)+1 种基金the 111Project 2.0 of China(No.BP2018008)the Fundamental Research Funds for the Central Universities(Nos.xtr022019004 and xzy022021014)。
文摘To further improve the service performance of Zr-2.5Nb alloy worked as pressure tubes in pressurized heavy water reactors,more investigation about the microstructure and thermomechanical processing route of Zr-2.5Nb alloy need to be conducted.In this work,a hetero-structured Zr-2.5Nb alloy was prepared by applying a novel technique.Microstructure analysis reveals that the alloy exhibits a grain sizedependent martensite substructure transition during post-rolling quenching.The hetero-structure consists of equiaxed primaryαgrains and the lamellae groups containing both parallelα’dislocation martensite andα’twin martensite.Compared with the previously reported Zr-Nb alloys,the present Zr-2.5Nb alloys manifest the highest yield strength(∼710 MPa),together with a high ultimate tensile strength(∼844 MPa)and good ductility(∼17.1%).The enhanced mechanical properties are found to arise from the properly controlled fraction/size of the two types of martensite,which not only significantly strengthens the alloy but also contributes to a stronger strain hardening.A model based on the grain-size-dependent critical resolved shear stress for dislocation slip and twinning has been proposed to explain theα’martensite substructures transition at a critical grain size dc=3.3μm.Below this size,the critical resolved shear stress(CRSS)for twinning is higher than that for the<c+a>slip.Thus,theα’dislocation martensite is more favorable to form.Otherwise,theα’twin martensite would exhibit a high activity.The present work indicates that making use of the grain size-dependent martensite transformation to tailor the heterostructure in Zr alloys is an effective strategy to overcome the strength–ductility trade-off in the material.
基金financially supported by the National Key Research and Development Program of China (No. 2017YFA0700701)the National Natural Science Foundation of China (Nos. 51722104, 51625103, 51790482 and 51761135031)+5 种基金the “111 Project 2.0 of China” (No. BP2018008)the Fok Ying-Tong Education Foundation (No. 161096)the Fundamental Research Funds for the Central Universities for part of the financial supportthe financial support by the Venture & Innovation Support Program for Chongqing Overseas Returnees (cx2018002)the National Defense Basic Scientific Research Programthe Fundamental Research Funds for the Central Universities (2020CDJDCL001)。
文摘How to design ultra-strong,light-weight Cu alloys is a long-term pursuit in materials community,which is technically superior and cost-effective for their promising energy-saving applications.In this work,we prepared Cu-Mg alloyed thin films to study light element Mg alloying effects on the microstructure,hardness and strain rate sensitivity(SRS) of nanocrystalline Cu thin films.In the studied Mg concentrationrange spanning from 0 at.% to 16.8 at.%,both the grain size and the twin spacing decrease monotonously with increasing Mg composition while Cu-2.8 at.% Mg sample has the highest twin fraction of ~75%.A combined strengthening model was employed to quantify the Mg concentration-dependent hardness of nanotwinned(NT) Cu-Mg thin films,in which the grain/twin boundary facilitates strengthening while the solute Mg atoms induce softening.Both the constant rate of loading tests and the nanoindentation creep tests uncover that compared with pure Cu samples,the NT Cu-Mg thin films manifest much lower SRS,particularly in the creep tests,owing to the activation of dynamic strain aging effects.
基金supported by the National Natural Science Foundation of China(Grant Nos.92163201 and U2067219)Shaanxi Province Youth Innovation Team Project(No.22JP042)+1 种基金Shaanxi Province Innovation Team Project(No.2024RS-CXTD-58)the Fundamental Research Funds for the Central Universities(No.xtr022019004).
文摘The chemical boundaries inside the ultrafine spinodal decomposition structure in metastable β-Ti alloys can act as a new feature to architect heterogeneous microstructures.In this work,we combined two semi-empirical methods,i.e.,the d-electron theory and the e/a electron concentration,to achieve the spinodal decomposition structure in a metastable β Ti-4.5Al-4.5Mo-7V-1.5Cr-1.5Zr(wt.%)alloy.Utilizing the spinodal decomposition structure,the aged Ti-Al-Mo-V-Cr-Zr alloys showed multi-architectured α precipitates spanning from micron-scale(primary α_(p))to nano-scale(secondary α_(s))that were uniformly distributed in the β-domains.Being compared with the forged sample,the multi-scale heterogeneous microstructure enables the aged β-Ti alloy to have ultra-high strength(yield strength ~1366 MPa and ultimate tensile strength ~1424 MPa)and an appreciable ductility(~9.3%).Strengthening models were proposed for the present alloys to estimate the contribution of various microstructural features to the measured yield strength.While the solid solution strengthening,β-spinodal strengthening,and back stress strengthening made comparable contributions to the strength of the forged alloy,the back stress strengthening was the predominant strengthening effect in the aged alloy.This alloy design approach based on chemical boundary engineering to construct multi-architectured α precipitates provided an effective strategy for achieving an outstanding combination of ultra-high strength and ductility in metastable β-Ti alloys.
基金financially supported by the National Natural Science Foundation of China(Nos.U2067219,51722104,51790482,51761135031 and 92163201)the National Key Research and Development Program of China(No.2017YFA0700701)+1 种基金the 111 Project 2.0 of China(No.BP2018008)the Fundamental Research Funds for the Central Universities(No.xtr022019004)。
文摘In this work,we prepare transformable HEA/Cu nanolaminates(NLs)with equal individual layer thick-ness(h)by the magnetron sputtering technique,i.e.,Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu and Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu,and comparatively study He-ion irradiation effects on their microstructure and mechanical properties.It ap-pears that the as-deposited HEA/Cu NLs manifest two size h-dependent hardness regimes(i.e.,increased hardness at small h and hardness plateau at large h),while the He-implanted ones exhibit monotonically increased hardness.Contrary to the fashion that smaller h renders less irradiation hardening in bimetal NLs,the Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs manifest the trend that smaller h leads to greater irradiation hard-ening.By contrast,the Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu NLs exhibit the maximum irradiation hardening at a critical h=50 nm.Below this critical size,smaller h results in lower radiation hardening(similar to bimetal NLs),while above this size,smaller h results in greater radiation hardening(similar to Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs).Moreover,these transformable HEA/Cu NLs display inverse h-dependent strain rate sensitivity(SRS m)before and after He-ion irradiation.Nevertheless,compared with as-deposited samples,the irradi-ated Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs display reduced SRS,while the irradiated Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu NLs dis-play enhanced SRS.Such unusual size-dependent irradiation strengthening and inverse h effect on SRS in irradiated samples were rationalized by considering the blocking effects of He bubbles on dislocation nucleation and motion,i.e.,dislocations shearing or bypassing He bubbles.
文摘In line with the developing trend in the 90’s [1] and the requirements of the power dispatching center of BEPB(Bejing Electric Power Bureau),the open and distributed EMS/DMS SD-6000E is developed as the master station of BEPB project. Because the power system of BEPB, either the capacity of peak load, or the quantity of substations under monitoring and number of subsidiary control centers in hierarchical structure, is the largest district power system in China, in view of this situation and the significance of capital power supply, the comprehensive dispatch automation system with high reliability was planned, the integrated EMS/DMS SD6000E with multi-screen video graphic systems has been developed. This project was planned from December of 1992, started on April 30,1996, and will be completed by the end of 1998.This project is the largest EMS/DMS project in China up to now.The overview of this project, including the comprehensive requirement of EMS/DMS from BEPB, the hardware configuration design of EMS master station, the software design of SD-6000E, the integrated multi-screen video graphic systems with EMS/DMS is described in this paper. The implementation of this project is briefly described as well.
文摘First evidence of a structure in the J/ψΛinvariant mass distribution is obtained from an amplitude analysis of■b^(-)J/ψΛK^(-)decays.The observed structure is consistent with being due to a charmonium pentaquark with strangeness with a significance of 3.1r including systematic uncertainties and lookelsewhere effect.Its mass and width are determined to be 4458:8±2:9t4:7-1:1 MeV and 17:3±6:5t8:0-5:7 MeV,respectively,where the quoted uncertainties are statistical and systematic.The structure is also consistent with being due to two resonances.In addition,the narrow excited■^(-)states,N■(1690)and■(1820),are seen for the first time in a■b^(-)decay,and their masses and widths are measured with improved precision.The analysis is performed using pp collision data corresponding to a total integrated luminosity of 9 fb^(-1),collected with the LHCb experiment at centre-of-mass energies of 7,8 and 13 TeV.
基金support from CERN and from the national agencies:CAPES,CNPq,FAPERJ and FINEP(Brazil)MOST and NSFC(China)+11 种基金CNRS/IN2P3(France)BMBF,DFG and MPG(Germany)INFN(Italy)KWO(Netherlands)MNiSW and NCN(Poland)MEN/IFA(Romania)MinES and FASO(Russia)MinECo(Spain)SNSF and SER(Switzerland)NASU(Ukraine)STFC(United Kingdom)NSF(USA).
文摘A search for the doubly charmed baryon ■^+cc is performed through its decay to theΛ^+c K^-π^+ final state,using proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7,8 and 13 TeV.The data correspond to a total integrated luminosity of 9 fb^-1.No significant signal is observed in the mass range from 3.4 to 3.8 GeV/c^2.Upper limits are set at 95%credibility level on the ratio of the ■^+cc production cross-section times the branching fraction to that ofΛ^+c and ■^++cc baryons.The limits are determined as functions of the ■^+cc mass for different lifetime hypotheses,in the rapidity range from 2.0 to 4.5 and the transverse momentum range from 4 to 15 GeV/c.
基金Supported by CERNnational agencies:CAPES+30 种基金CNPqFAPERJFINEP(Brazil)MOSTNSFC(China)CNRS/IN2P3(France)BMBFDFGMPG(Germany)INFN(Italy)NWO(Netherlands)MNiSWNCN(Poland)MEN/IFA(Romania)MSHE(Russia)MinECo(Spain)SNSFSER(Switzerland)NASU(Ukraine)STFC(United Kingdom)DOE NPNSF(USA)Key Research Program of Frontier Sciences of CAS,CAS PIFIthe Thousand Talents Program(China)RFBRRSFYandex LLC(Russia)GVAXuntaGalGENCAT(Spain)the Royal Society and the Leverhulme Trust(United Kingdom)
文摘The production of ■baryons in proton-proton collisions at a centre-of-mass energy of √s = 13 TeV is measured in the transverse-momentum range 4<pT<15GeV/c and the rapidity range2.0<y<4.5.The data used in this measurement correspond to an integrated luminosity of 1.7fb^-1,recorded by the LHCb experiment during 2016.The ratio of the ■ production cross-section times the branching fraction of the■→∧^+cK^-π^+ π^+decay relative to the prompt ∧^+c production cross-section is found to be(2.22±0.27±0.29)×10^-4,assuming the central value of the measured lifetime,where the first uncertainty is statistical and the second systematic.
基金The project support from CERN and from the national agencies:CAPES,CNPq,FAPERJ and FINEP(Brazil)MOST and NSFC(China)+18 种基金CNRS/IN2P3(France)BMBF,DFG and MPG(Germany)INFN(Italy)NWO(Netherlands)MNiSW and NCN(Poland)MEN/IFA(Romania)MICINN(Spain)SNSF and SER(Switzerland)NASU(Ukraine)STFC(United Kingdom)DOE NP and NSF(USA).We acknowledge the computing resources that are provided by CERN,IN2P3(France),KIT and DESY(Germany),INFN(Italy),SURF(Netherlands),PIC(Spain),GridPP(United Kingdom),CSCS(Switzerland),IFIN-HH(Romania),CBPF(Brazil),Polish WLCG(Poland)and NERSC(USA).Individual groups or members have received support from ARC and ARDC(Australia)Minciencias(Colombia)AvH Foundation(Germany)EPLANET,Marie Sklodowska-Curie Actions and ERC(European Union)A*MIDEX,ANR,IPhU and Labex P2IO,and Région Auvergne-RhôneAlpes(France)Key Research Program of Frontier Sciences of CAS,CAS PIFI,CAS CCEPP,Fundamental Research Funds for the Central Universities,and Sci.&Tech.Program of Guangzhou(China)GVA,XuntaGal,GENCAT and Prog.Atracción Talento,CM(Spain)SRC(Sweden)the Leverhulme Trust,the Royal Society and UKRI(United Kingdom).
文摘A first search for the Ξ_(bc)^(+)J/ψΞ_(c)^(+) decay is performed by the LHCb experiment with a data sample of proton-proton collisions, corresponding to an integrated luminosity of 9 fb−1 recorded at centre-of-mass energies of 7, 8, and 13 TeV. Two peaking structures are seen with a local (global) significance of 4.3(2.8) and 4.1(2.4) standard deviations at masses of 6571 and 6694 MeV/c2, respectively. Upper limits are set on the Ξ+bc baryon production cross-section times the branching fraction relative to that of the B+c→J/ψD+s decay at centre-of-mass energies of 8 and 13 TeV, in the Ξ+bc and in the B+c rapidity and transverse-momentum ranges from 2.0 to 4.5 and 0 to 20GeV/c, respectively. Upper limits are presented as a function of the Ξ+bc mass and lifetime.
基金CAPES,CNPq,FAPERJ and FINEP(Brazil)MOST and NSFC(China)+18 种基金CNRS/IN2P3(France)BMBF,DFG,MPG(Germany)INFN(Italy)NWO(Netherlands)MNiSW,NCN(Poland)MEN/IFA(Romania)MSHE(Russia)MICINN(Spain)SNSF,SER(Switzerland)NASU(Ukraine)STFC(United Kingdom)DOE NP,NSF(USA).We acknowledge the computing resources that are provided by CERN,IN2P3(France),KIT and DESY(Germany),INFN(Italy),SURF(Netherlands),PIC(Spain),GridPP(United Kingdom),RRCKI and Yandex LLC(Russia),CSCS(Switzerland),IFIN-HH(Romania),CBPF(Brazil),PL-GRID(Poland)and NERSC(USA)AvH Foundation(Germany)EPLANET,Marie Sklodowska-Curie Actions and ERC(European Union)A*MIDEX,ANR,Labex P2IO and OCEVU,Region Auvergne-Rhdne-Alpes(France)Key Research Program of Frontier Sciences of CAS,CAS PIFI,CAS CCEPP,Fundamental Research Funds for the Central Universities,and Sci.Tech.Program of Guangzhou(China)RFBR,RSF and Yandex LLC(Russia)GVA,XuntaGal,GENCAT(Spain)the Leverhulme Trust,the Royal Society and UKRI(United Kingdom)。
文摘The first search for the doubly heavyΩ^(0)_(bc)baryon and a search for the E^(0)_(bc)baryon are performed using pp collision data collected via the LHCb experiment from 2016 to 2018 at a centre-of-mass energy of 13 TeV,corresponding to an integrated luminosity of 5.2 fb^(-1).The baryons are reconstructed via their decays to Λ^(+)_(c)π^(-)and E^(+)_(c)π^(-).No significant excess is fbund for invariant masses between 6700 and 7300 MeV/c^(2),in a rapidity range from 2.0 to 4.5 and a transverse momentum range from 2 to 20 MeV/c.Upper limits are set on the ratio of the Ω^(0)_(bc)and E^(0)_(bc)production cross-section times the branching fraction to Λ^(+)_(c)π^(-)(E^(+)_(c)π^(-))relative to that of the Λ^(0)_(b)(E^(0)_(b))baryon,for different lifetime hypotheses,at 95%confidence level.The upper limits range from 0.5 x 10^(-4)to 2.5 x 10^(-4)for theΩ^(0)_(bc)→Λ^(+)_(c)π^(-)(E^(0)_(bc)→Λ^(+)_(c)π^(-))decay,and from 1.4x 10^(-3)to 6.9 x 10^(-3)for theΩ^(0)_(bc)→E^(+)_(c)π^(-)(E^(0)_(bc)→E^(+)_(c)π^(-))decay,depending on the considered mass and lifetime of theΩ^(0)_(bc)(E^(0)_(bc))baryon.
文摘A search for the rare decays W^(+)→D_(s)^(+)γ and Z→D0γis performed using proton-proton collision data collected by the LHCb experiment at a centre-of-mass energy of 13TeV,corresponding to an integrated luminosity of 2.0fb−1.No significant signal is observed for either decay mode and upper limits on their branching fractions are set using W^(+)→D_(s)^(+)γ and Z→μ+μ−decays as normalization channels.The upper limits are 6.5×10^(−4) and 2.1×10^(−3) at 95% confidence level for the W^(+)→D_(s)^(+)γ and Z→D^(0)γ decay modes,respectively.This is the first reported search for the Z→D^(0)γ decay,while the upper limit on the W+→D+sγbranching fraction improves upon the previous best limit.
基金support from AvH Foundation(Germany)EPLANET,Marie Sk lodowska-Curie Actions and ERC(European Union)+11 种基金A*MIDEXANRLabex P2IOOCEVURégion Auvergne-Rh?ne-Alpes(France)Key Research Program of Frontier Sciences of CASCAS PIFIThousand Talents ProgramSci.&Tech.Program of Guangzhou(China)RFBR,RSF and Yandex LLC(Russia)GVA,Xunta Gal and GENCAT(Spain)the Royal Society and the Leverhulme Trust(United Kingdom)。
文摘A search for the rare decay B^(0)→J/ψФis performed using Pp collision data collected with the LHCb dete-ctor at centre-of-mass energies of 7,8 and 13 TeV,corresponding to an integrated luminosity of9 fb.No significant signal of the decay is observed and an upper limitof 1.1x 10^(-7)at 90%confidence level is set on the branching fraction.