Meso-Neoarchean fuchsite quartzites are present in different stratigraphic positions of Dharwar Craton including the oldest(~3.3 Ga)Sargur Group of western Dharwar Craton.The present study deals with the petro-graphic...Meso-Neoarchean fuchsite quartzites are present in different stratigraphic positions of Dharwar Craton including the oldest(~3.3 Ga)Sargur Group of western Dharwar Craton.The present study deals with the petro-graphic and geochemical characteristics of the fuchsite quartzites from the Ghattihosahalli belt to evaluate their genesis,depositional setting and the enigma involved in the ancient sedimentation history.Their major mineral assemblages include quartz,fuchsite,and feldspars along with accessory kyanite and rutile.The geochemical com-positions are characterized by high SiO_(2),Al_(2)O_(3),low MgO,CaO,strongly enriched Cr(1326–6899 ppm),Ba(1165–3653 ppm),Sr(46–210 ppm),V(107–868 ppm)and Zn(11–158 ppm)contents compared to the upper continental crust(UCC).The UCC normalized rare earth element(REE)patterns are characterized by depleted light REE[(La/Sm)UCC=0.33–0.95]compared to heavy REE[(Gd/Yb)_(UCC)=0.42–1.65]with conspicuous positive Eu-anomalies(Eu/Eu^(*)=1.35–18.27)characteristic of hydrothermal solutions evidenced through the interlayered barites.The overall major and trace element systematics reflect a combined mafic-felsic provenance and suggest their deposition at a passive continental margin environ-ment.The comprehensivefield,petrographic,and geo-chemical studies indicate that these quartzites are infiltrated by Cr-richfluids released during high-grade metamorphism of associated ultramafic rocks.The Sargur and the subse-quent Dharwar orogeny amalgamated diverse lithounits from different tectonic settings,possibly leading to the release of Cr-richfluids and the formation of fuchsite quartzite during or after the orogeny.Thesefindings sug-gest a pre-existing stable crust prior to the Sargur Group and the link between orogenic events and various mineral deposits in the Dharwar Craton.展开更多
The early Archean oceans were marked by significant redox changes which have subsequently shaped the Earth’s biosphere.Archean chemical sediments of banded Iron and Manganese formations provide important geochemical ...The early Archean oceans were marked by significant redox changes which have subsequently shaped the Earth’s biosphere.Archean chemical sediments of banded Iron and Manganese formations provide important geochemical proxies for these historical shifts in the redox conditions and to trace the ancient sedimentation patterns and protoliths.In this study,we investigate the proto-ore of the Archean Mn-formations of the Sandur,Chitradurga and Shimoga greenstone belts of Dharwar Craton of southern Peninsular India,which is geochemically characterised as quartz arenites,Mn-arenites,Fe-arenites,Mn-argillites and Fe-argillites.The geochemical systematics suggest their deposition in shallow to deeper shelf in the Archean proto-ocean.The detrital zircon U-Pb systematics of Mn arenites and argillites indicate their maximum depositional age of 3230±52 Ma representing the oldest onset of sedimentation during the Paleo-Mesoarchean timeframe in the Chitradurga Group of Dharwar Supergroup.The detrital influx proxies suggest variations in sedimentation rates associated with the Archean transgressive-regressive cycles and fluctuating hydrodynamic conditions,together reflecting an increasing trend in the contributions of recycled sediment from Sandur to Chitradurga and Shimoga greenstone belts.The available detrital zircon ages of the Mn arenites and argillites from these greenstone belts indicate a~600 Ma prolonged period of Mn deposition for which high-T hydrothermal fluids from Archean mid-oceanic ridges supplied the manganese.The trace element compositions of the concordant detrital zircons suggest 3.3-3.1 Ga Dharwar basement TTG/granitoid source which is corroborated by the zircon crystallization temperatures of 690-820℃.The source-normalisedα-dose rates of the detrital zircons signify greater degrees of sediment transport and multi-cycle nature which correspond to the earliest episode of crustal growth in the Indian sub-continent associated with the Mesoarchean Ur supercontinent.The clastic-chemogenic sedimentation attained through concomitant detrital sediment-seawater-metalliferous hydrothermal fluid mixing at an epicontinental passive margin resulted in the deposition of Mn-arenites and argillites closer to the higher Eh shore,while the Fe-rich sediments formed at a relatively deeper shelf characterised by comparatively lower Eh and more alkaline conditions.The comprehensive geochemical and geochronological data of the Archean Mn arenite-argillite sequences reveal the significance of regional episodes of ocean oxygenation at the shallow shelves of Archean oceans prior to great oxygenation event(GOE)that was mediated by the prolific growth of ancient microbiota which transformed the Earth to a more habitable planet.展开更多
基金funds MLP 6406-28(MRM)of CSIR-NGRIGH acknowledges DSTINSPIRE for PhD Fellowship(No.DST/INSPIRE/03/2021/001295)+1 种基金CM acknowledges the CSIR Emeritus Project funds。
文摘Meso-Neoarchean fuchsite quartzites are present in different stratigraphic positions of Dharwar Craton including the oldest(~3.3 Ga)Sargur Group of western Dharwar Craton.The present study deals with the petro-graphic and geochemical characteristics of the fuchsite quartzites from the Ghattihosahalli belt to evaluate their genesis,depositional setting and the enigma involved in the ancient sedimentation history.Their major mineral assemblages include quartz,fuchsite,and feldspars along with accessory kyanite and rutile.The geochemical com-positions are characterized by high SiO_(2),Al_(2)O_(3),low MgO,CaO,strongly enriched Cr(1326–6899 ppm),Ba(1165–3653 ppm),Sr(46–210 ppm),V(107–868 ppm)and Zn(11–158 ppm)contents compared to the upper continental crust(UCC).The UCC normalized rare earth element(REE)patterns are characterized by depleted light REE[(La/Sm)UCC=0.33–0.95]compared to heavy REE[(Gd/Yb)_(UCC)=0.42–1.65]with conspicuous positive Eu-anomalies(Eu/Eu^(*)=1.35–18.27)characteristic of hydrothermal solutions evidenced through the interlayered barites.The overall major and trace element systematics reflect a combined mafic-felsic provenance and suggest their deposition at a passive continental margin environ-ment.The comprehensivefield,petrographic,and geo-chemical studies indicate that these quartzites are infiltrated by Cr-richfluids released during high-grade metamorphism of associated ultramafic rocks.The Sargur and the subse-quent Dharwar orogeny amalgamated diverse lithounits from different tectonic settings,possibly leading to the release of Cr-richfluids and the formation of fuchsite quartzite during or after the orogeny.Thesefindings sug-gest a pre-existing stable crust prior to the Sargur Group and the link between orogenic events and various mineral deposits in the Dharwar Craton.
文摘The early Archean oceans were marked by significant redox changes which have subsequently shaped the Earth’s biosphere.Archean chemical sediments of banded Iron and Manganese formations provide important geochemical proxies for these historical shifts in the redox conditions and to trace the ancient sedimentation patterns and protoliths.In this study,we investigate the proto-ore of the Archean Mn-formations of the Sandur,Chitradurga and Shimoga greenstone belts of Dharwar Craton of southern Peninsular India,which is geochemically characterised as quartz arenites,Mn-arenites,Fe-arenites,Mn-argillites and Fe-argillites.The geochemical systematics suggest their deposition in shallow to deeper shelf in the Archean proto-ocean.The detrital zircon U-Pb systematics of Mn arenites and argillites indicate their maximum depositional age of 3230±52 Ma representing the oldest onset of sedimentation during the Paleo-Mesoarchean timeframe in the Chitradurga Group of Dharwar Supergroup.The detrital influx proxies suggest variations in sedimentation rates associated with the Archean transgressive-regressive cycles and fluctuating hydrodynamic conditions,together reflecting an increasing trend in the contributions of recycled sediment from Sandur to Chitradurga and Shimoga greenstone belts.The available detrital zircon ages of the Mn arenites and argillites from these greenstone belts indicate a~600 Ma prolonged period of Mn deposition for which high-T hydrothermal fluids from Archean mid-oceanic ridges supplied the manganese.The trace element compositions of the concordant detrital zircons suggest 3.3-3.1 Ga Dharwar basement TTG/granitoid source which is corroborated by the zircon crystallization temperatures of 690-820℃.The source-normalisedα-dose rates of the detrital zircons signify greater degrees of sediment transport and multi-cycle nature which correspond to the earliest episode of crustal growth in the Indian sub-continent associated with the Mesoarchean Ur supercontinent.The clastic-chemogenic sedimentation attained through concomitant detrital sediment-seawater-metalliferous hydrothermal fluid mixing at an epicontinental passive margin resulted in the deposition of Mn-arenites and argillites closer to the higher Eh shore,while the Fe-rich sediments formed at a relatively deeper shelf characterised by comparatively lower Eh and more alkaline conditions.The comprehensive geochemical and geochronological data of the Archean Mn arenite-argillite sequences reveal the significance of regional episodes of ocean oxygenation at the shallow shelves of Archean oceans prior to great oxygenation event(GOE)that was mediated by the prolific growth of ancient microbiota which transformed the Earth to a more habitable planet.