期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of Y content and equal channel angular pressing on the microstructure, texture and mechanical property of extruded Mg-Y alloys 被引量:15
1
作者 W.Yang g.f.quan +4 位作者 B.Ji Y.F.Wan H.Zhou J.Zheng D.D.Yin 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第1期210-224,共15页
The microstructure, texture and mechanical property evolution of the extruded Mg-x Y(x = 1, 5 wt.%) alloys during equal channel angular pressing(ECAP) were systematically investigated using an optical microscope, elec... The microstructure, texture and mechanical property evolution of the extruded Mg-x Y(x = 1, 5 wt.%) alloys during equal channel angular pressing(ECAP) were systematically investigated using an optical microscope, electron backscatter diffraction(EBSD) and uniaxial tensile test. The Mg-Y alloys exhibited a weakened basal texture before the ECAP, and the texture was further weakened with the max basal poles dispersed along ~45° between the extrusion direction and the transverse direction after the ECAP. The Mg-5 Y alloys always exhibited a finer grain size comparing to that of Mg-1 Y for the same ECAP process. With a proper ECAP process, both the strength and elongation of Mg-5 Y alloy could be improved simultaneously after the ECAP, i.e., the yield strength(273.9 ± 1.2 MPa), ultimate strength(306.4 ± 3.0 MPa),and elongation(23.9 ± 1.0%) were increased by 10%, 6%, and 72%, respectively, comparing to that before the ECAP. This was considered to be arose from the combined effects of grain refinement, significant improved microstructure homogeneity and solid solution hardening.In addition, it was found that Mg-Y alloy with better comprehensive properties could be obtained by the decreasing-temperature ECAP processes. The yield strength-grain size relationship could be well described by the Hall-Petch relation for all the ECAPed Mg-Y alloys,which was consistent with that the texture changes did not significantly affect the average Schmid factors of basal, prismatic and pyramidal slips for both Mg-Y alloys. 展开更多
关键词 Mg-RE alloy Equal channel angular pressing TEXTURE Mechanical property
在线阅读 下载PDF
Improved mechanical properties and strengthening mechanism with the altered precipitate orientation in magnesium alloys 被引量:12
2
作者 Y.J.Wan Y.Zeng +5 位作者 Y.C.Dou D.C.Hu X.Y.Qian Q.Zeng K.X.Sun g.f.quan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第5期1256-1267,共12页
Aging prior to twinning deformation was proposed to alter the precipitate orientation of the plate-shapedβ-MgAlfrom(0002)basal planes(named basal plates)to■prismatic planes(named prismatic plates)in AZ31 Mg alloy.Th... Aging prior to twinning deformation was proposed to alter the precipitate orientation of the plate-shapedβ-MgAlfrom(0002)basal planes(named basal plates)to■prismatic planes(named prismatic plates)in AZ31 Mg alloy.The experimental results showed that the compressive yield strength(CYS)of the sample containing prismatic plates increased 40 MPa and the compression ratio raised by 22%compared to that containing basal plates.The underlying strengthening mechanism was analyzed via a yield strengthen(YS)model with a function of grain size,precipitate characters(size,oritention,fraction)and Schmid factor(SF).It revealed that the improvement of CYS was mainly attributed to the altered precipitate orientation and refined grain size produced by twinning deformation.Particularly,the prismatic plates always have a stronger hardening effect on basal slip than basal plates under the same varites of precipitate diameter and SF.Besides,the decreased CRSS ratio of prismatic slip to basal slip revealed that the activity of non-basal slip in Mg alloy might be enhanced.More activated slip systems provided more mobile dislocations,contributing to the large compression ratio of the Mg rolled sheet with prismatic plates. 展开更多
关键词 Precipitate orientation Precipitation strengthening Grain boundary strengthening Yield strength model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部