期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Regulating phase ratios and mechanical properties of polysynthetic twinned TiAl single crystals via annealing
1
作者 L.W.Kong Z.B.Xing +8 位作者 F.R.Chen Q.Q.Yin L.Pang X.Liu Y.Shu P.Li Z.X.Qi g.chen Y.J.Tian 《Journal of Materials Science & Technology》 2025年第9期223-236,共14页
Polysynthetic twinned(PST)TiAl single crystal specifically refers to a fully lamellar TiAl single crystal with parallel phase interfaces and twin interfaces grown by directional solidification.In this paper,PST single... Polysynthetic twinned(PST)TiAl single crystal specifically refers to a fully lamellar TiAl single crystal with parallel phase interfaces and twin interfaces grown by directional solidification.In this paper,PST single crystals with different phase ratios are obtained by annealing at specific temperatures and holding times.The results show that the diffusion rates of Ti and Al elements at various temperatures directly trigger and propel the surface recrystallization and variation in the internal phase ratio.When the temperature is lower than 1448 K,the diffusion rate of Ti is obviously higher than that of Al,which causes one denseα_(2)recrystallized layer to form on the surface of TiAl single crystals.Meanwhile,as more Ti elements migrate to the surface,theα_(2)phase ratio inside the TiAl single crystal thereby decreases.When the temperature exceeds 1448 K,the diffusion rate of Al gradually reverses to exceed that of Ti,which forms the surface sandwiched recrystallization dominated byγphase and simultaneously increasesα_(2)phase ratio inside the TiAl single crystal.The variation in the two-phase ratio directly induces a significant change in the lamellae thickness,which exhibits different tensile behaviors of PST-TiAl single crystal.When theα_(2)phase content is less than 20%,widerγlamellae make it easier for dislocations to be activated within its lamellae and continuously move across theγ/α_(2)interfaces,thereby obtaining better tensile plasticity.As theα_(2)phase content exceeds 30%,finerγlamellae inhibit the dislocation initiation,resulting in the fracture occurrence of TiAl single crystal before yielding.No matter how the phase ratio changes,the crack preferentially initiates withinα_(2)lamellae.However,the crack propagation follows different paths based on variousγlamella thicknesses.The fracture mode of PST-TiAl single crystal also changes from shear fracture along slip bands within theγlamella to brittle fracture along the{1¯100}planes withinα_(2)lamella. 展开更多
关键词 PST-TiAl single crystal Surface recrystallization Phase ratio regulation Diffusion rate Fracture mode
原文传递
交联聚乙烯电缆绝缘中的电树枝与绝缘结构亚微观缺陷 被引量:19
2
作者 郑晓泉 g.chen A.E.Davies 《电工技术学报》 EI CSCD 北大核心 2006年第11期28-33,共6页
半结晶高聚物中的电树枝特性远比纯脆性或柔性聚合物复杂,源于材料中的结晶区和无定形区两相共存。在厚绝缘交联聚乙烯(XLPE)中还存在不均匀结晶和微孔高度集中,以及残存应力,导致电树枝特性更加复杂。本文提出利用生长速度比和扩展系... 半结晶高聚物中的电树枝特性远比纯脆性或柔性聚合物复杂,源于材料中的结晶区和无定形区两相共存。在厚绝缘交联聚乙烯(XLPE)中还存在不均匀结晶和微孔高度集中,以及残存应力,导致电树枝特性更加复杂。本文提出利用生长速度比和扩展系数两个新参数来研究XLPE中的电树枝生长规律。根据XLPE电缆绝缘中电树枝结构特征和生长特性,研究了电树枝的影响因素和绝缘中的四种亚微观绝缘结构弱点,分析了微孔集中、大球晶边界及结晶排渣、应力、电场局部集中所导致的电树枝在绝缘内侧的迅速扩展现象,提出了超高压XLPE电缆发展所必须解决的亚微观绝缘结构缺陷在电缆绝缘内侧集中问题及其对策。 展开更多
关键词 XLPE电缆绝缘 亚微观 绝缘弱点 本征电树枝 双结构电树枝
在线阅读 下载PDF
Control of dislocation density maximizing precipitation strengthening effect 被引量:8
3
作者 C.Xu W.J.Dai +6 位作者 Y.Chen Z.X.Qi G.Zheng Y.D.Cao J.P.Zhang C.C.Bu g.chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第32期133-143,共11页
The strength-ductility trade-off has been the most challenging problem for structural metals for centuries.Nanoprecipitation strengthening is an ideal approach to enhance the strength without significantly sacrificing... The strength-ductility trade-off has been the most challenging problem for structural metals for centuries.Nanoprecipitation strengthening is an ideal approach to enhance the strength without significantly sacrificing the ductility.Stable nanoprecipitates have been successfully acquired by nanostructural design,but the number density of nanoprecipitates cannot be further increased.Researchers attempted to enhance number density by introducing highly potent nucleation sites(e.g.,dislocations).However,there remains controversy over the influence of dislocations on the nucleation and growth of coherent nanoprecipitates with minimized nucleation barrier.Here,Cu-rich nanoprecipitates in an HSLA steel,as a typical type of coherent nanoprecipitates,are investigated.By combining analytical calculation and experiments,we show that dislocations are harmful for the formation of large numbered Cu-rich nanoprecipitates in a certain density range.Insufficient dislocations deprive solute atoms which decrease homogenous precipitation that cannot be compensated by the increase in heterogeneous precipitation.Under such circumstance,Cu-rich nanoprecipitates have smaller number density but larger size and higher fraction of incoherent structures due to rapid Ostwald ripening.As a result,by controlling dislocation density,the yield strength is increased by 24%without obvious loss in ductility as compared with traditional solution-quench-age process.Our work would help to optimize composition and processing routes that fully exploit the nanoprecipitation strengthening effect. 展开更多
关键词 Cu-rich nanoprecipitates Crystallographic defects NUCLEATION Structural transformation Ostwald ripening
原文传递
On the microstructural origin of premature failure of creep strength enhanced martensitic steels 被引量:5
4
作者 J.Li C.Xu +3 位作者 G.Zheng W.J.Dai C.C.Bu g.chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第28期269-279,共11页
The creep strength enhanced martensitic steels are key material for the main power generating units in ultra-supercritical plants.Studies on the evaluation of their creep rupture life show there is an overestimation o... The creep strength enhanced martensitic steels are key material for the main power generating units in ultra-supercritical plants.Studies on the evaluation of their creep rupture life show there is an overestimation of rupture life after long-term creep,which is known as premature failure.However,the microstructural origin of the premature failure remains unclear.Here in this study,we have carefully investigated the microstructural transformations and their influences on creep rupture behavior,showing that the evolution of martensite and M_(23)C_(6) carbides as well as Laves phase are responsible for the premature failure.By using multi-step TTP-LMP method,we confirmed a three-stage creep rupture behavior under different stress regions.Further quantitative analysis showed that the coarsening of M_(23)C_(6) carbides and recovery of martensite exert equal and dominant effects on the premature failure in the medium stress region,while precipitation and coarsening of Laves phase are responsible for the premature failure in the low stress region. 展开更多
关键词 Creep strength enhanced martensitic steel Premature failure M_(23)C_(6)carbides Martensite recovery Laves phase
原文传递
Sample size effect on the dynamic torsional behaviour of the 2A12 aluminium alloy 被引量:5
5
作者 J.H.Chen W.F.Xu +4 位作者 R.Z.Xie F.J.Zhang W.J.Hu X.C.Huang g.chen 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第6期317-324,共8页
In order to investigate the effect of sample size on the dynamic torsional behaviour of the 2A12 aluminium alloy. In this paper, torsional split Hopkinson bar tests are conducted on this alloy with different sample di... In order to investigate the effect of sample size on the dynamic torsional behaviour of the 2A12 aluminium alloy. In this paper, torsional split Hopkinson bar tests are conducted on this alloy with different sample dimensions. It is found that with the decreasing gauge length and thickness, the tested yield strength increases. However, the sample innerlouter diameter has little effect on the dynamic torsional behaviour. Based on the finite element method, the stress states in the alloy with different sample sizes are analysed. Due to the effect of stress concentration zone (SCZ), the shorter sample has a higher yield stress. Furthermore, the stress distributes more uniformly in the thinner sample, which leads to the higher tested yield stress. According to the experimental and simulation analysis, some suggestions on choosing the sample size are given as well. 展开更多
关键词 Torsional split Hopkinson bar Dynamic torsion Sample size effect Finite element analysis Stress distribution
在线阅读 下载PDF
交、直流电场作用下交联聚乙烯中的空间电荷习性(英文) 被引量:3
6
作者 C.Zhou g.chen 《高电压技术》 EI CAS CSCD 北大核心 2015年第4期1167-1177,共11页
Polyethylene is one of the widely studied polymeric insulation materials,which have been used extensively for cable insulation.One of the major issues related to polymeric materials is its easy formation of space char... Polyethylene is one of the widely studied polymeric insulation materials,which have been used extensively for cable insulation.One of the major issues related to polymeric materials is its easy formation of space charge,a high chance to cause electric field distortions.This phenomenon is more significant under high voltage direct current(HVDC)stresses.Space charge can also be observed under high voltage alternative current(HVAC)stresses but with much less intensity due to the limited charge injection period and the effect of charge recombination caused by the constantly variance of the external fields.When considering the situation of an AC voltage combined with a DC offset,a possible scenario in HVDC technology,there was little research on charge dynamics in the insulation in terms of both experimental and simulation work.In this paper,a numerical simulation based a bipolar charge injection/transport model is used to obtain characteristics of space charge in polyethylene under the combined AC and DC high voltage at room temperature.The bipolar charge injection/transport model,which is widely used in HVDC space charge simulation,is applied in the combined conditions.The overall applied voltage,consisted of root mean square(RMS)values of the AC voltage and DC voltage,is kept the same,while the DC component’s voltage ratio and AC component’s frequency are changed respectively,to illustrate their effects on the space charge dynamics within the insulation under combined electric fields.The simulated charge distributions present notable differences when DC offset is increasingly added in,while relatively small differences when AC component’s frequency altering,especially for the cases whose frequency exceeding 0.5 Hz. 展开更多
关键词 空间电荷 交流电场 聚乙烯 直流电 行为研究 聚合物绝缘材料 HVDC HVAC
原文传递
Effect of Competing Anions on Arsenate Adsorption onto Maghemite Nanoparticles 被引量:3
7
作者 T.Tuutijrvi E.Repo +2 位作者 R.Vahala M.Sillanp g.chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第3期505-514,共10页
This paper reports the effect of several competing anions on arsenate adsorption with maghemite nanoparticles. Sulphate (as SO4), nitrate (as NO3-N), phosphate (as PO4-P) ions and silicate-(as SiO2) were-studi... This paper reports the effect of several competing anions on arsenate adsorption with maghemite nanoparticles. Sulphate (as SO4), nitrate (as NO3-N), phosphate (as PO4-P) ions and silicate-(as SiO2) were-studied in dual solution with arsenate. Moreover, the combined effect of ions and other water characteristics were examined with a natural groundwater sample which was spiked with a certain amount of arsenate. Arsenate batch adsorption experiments were carried out with two different kinds of maghemite-a commercially, available one and a homemade one using the sol-gel orocess. Sulohate (≤250 mg.L-1) and nitrate (≤ 12 mg.L-1) had a neglivible effect onthe arsenate (0.5 mg.L-1) adsorption at pH 3. However, both phosphate (42.9 mg·L-1) and silicate (450 mg.L-j) had an adverse impact on arsenate (43 mg.L-1) adsorption at pH 7. Phosphate (41.5 mg.L-1) showed minimal competition with arsenate (0.5 mg.L-1), while silicate (410 mg.L-1) inhibition was insignificant for all studied As(V) concentrations at p.H 3. The removal of arsenate from the groundwater sample was as efficient as from labo-ratory water tor 0.3 mgL -1 AS(V) botll at pH3 and pH7. 展开更多
关键词 anion effect groundwater NITRATE PHOSPHATE SILICATE water treatment
在线阅读 下载PDF
Further numerical investigation on concrete dynamic behaviors with considering stress non-equilibrium in SHPB test based on the waveform features 被引量:3
8
作者 T.H.Lv X.W.Chen +1 位作者 Y.J.Deng g.chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第4期873-886,共14页
In this study,with the meso-scale model reliably validated in our previous work(Construction and Building Materials,2018),the waveform features of plain concrete under various loading conditions and especially with co... In this study,with the meso-scale model reliably validated in our previous work(Construction and Building Materials,2018),the waveform features of plain concrete under various loading conditions and especially with considering stress non-equilibrium are reliably reproduced and predicted.Associating with waveform features,the violation indicator of the specimen stress equilibrium in the split Hopkinson pressure bar test is identified for concrete-like damage softening materi-als.The concrete material behaviors for stress non-equilibrium are further analyzed,e.g.the dynamic increase factor(DIF)and damage development,etc.The conception of“damage failure volume”is introduced,and a new method of defining the development of concrete dynamic damage is given in the nimierical study.What’s more,the“compression wave”and“double peak”phenomena observed in the experiment are further interpreted based on the means of numerical simulation.Waveform features how to reflect the concrete material properties is also concluded.The results show that,the disappearance of the“double peak” phenomenon of reflection curve under high strain rate can be regarded as the indicator of the violation of stress equilibrium.After the violation of the stress equilibrium,the relevant DIFs of the concrete specimen will not change significantly.Especially,the concrete specimen will turn into structural response from material response.The conception of“damage failure volume”can well explain the generation of the“double peak”phenomenon of the reflection curve.The “compression wave” phenomenon of reflection curve under lower strain rates is derived from the unloading expansion recovery of the concrete specimen.Furthermore,under the same loading condition,the amplitude of the first peak of the reflection curve can be used as the evaluation standard of the bonding quality between mortar and aggregates. 展开更多
关键词 Concrete material Split Hopkinson pressure bar test Numerical investigation Waveform feature Stress non-equilibrium Damage failure volume
原文传递
Seismic performance and global ductility of RC frames rehabilitated with retrofi tted joints by CFRP laminates 被引量:1
9
作者 M.Fakharifar M.K. Sharbatdar +3 位作者 Z.Lin A.Dalvand A.Sivandi-Pour g.chen 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第1期59-73,共15页
This paper presents a new FRP retrofi tting scheme to strengthen local beam-column joints in reinforced concrete(RC) frames.The new retrofi tting scheme was proposed following a preliminary study of four different exi... This paper presents a new FRP retrofi tting scheme to strengthen local beam-column joints in reinforced concrete(RC) frames.The new retrofi tting scheme was proposed following a preliminary study of four different existing retrofi tting schemes.A numerical simulation was conducted to evaluate the effectiveness of FRP-strengthened reinforced concrete frames by bridging behavior of local joints to the whole structure.Local confi nement effects due to varying retrofi tting schemes in the joints were simulated in the frame model.The seismic behavior factor was used to evaluate the seismic performance of the strengthened RC frames.The results demonstrated that the new proposed retrofi tting scheme was robust and promising,and fi nite element analysis appropriately captured the strength and global ductility of the frame due to upgrading of the local joints. 展开更多
关键词 beam-column joints behavior factor RETROFIT FRP dynamic analysis seismic performance
在线阅读 下载PDF
Strengthening in gradient TiAl alloys 被引量:1
10
作者 P.Li Y.Chen +6 位作者 X.Liu X.H.Wang F.R.Chen Z.X.Qi G.Zheng H.G.Xiang g.chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第35期98-105,共8页
Gradient structure is emerging as an effective strategy to fabricate metals with remarkable mechanical performance,but have not been verified in intermetallic compounds for high-temperature applications.Through experi... Gradient structure is emerging as an effective strategy to fabricate metals with remarkable mechanical performance,but have not been verified in intermetallic compounds for high-temperature applications.Through experiments and atomic simulations,we show that a typical intermetallic TiAl alloy with gra-dient structure has a significant strengthening effect both at room temperature and high temperatures.The room-temperature compressive strength of TiAl alloys with gradient grain obtained by additive man-ufacturing is 2.57 GPa,which is∼2.7 times as strong as that with equiaxed grain.The strengthening effect is attributed to more sessile dislocations in gradient structure caused by the intersections of mul-tiple slip systems in gradient grain.More importantly,the strengthening effect is still effective at high temperatures and the compressive strength is 1.28 GPa at 750°C.The simulation results show that this strengthening effect is due to the increased Hirth dislocation at high temperatures.This study expands the applications of TiAl alloys for load-bearing structures and provides a new strategy for improving the strength of intermetallic compounds at both room temperature and high temperatures. 展开更多
关键词 TiAl alloys Strengthening Gradient grain Additive manufacturing Molecular dynamics
原文传递
ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM 被引量:1
11
作者 X.C.Li W.X.Zhu +3 位作者 g.chen D.S.Mei J.Zhang K.M.Chen 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2003年第6期543-546,共4页
An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in mat... An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples, the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection. 展开更多
关键词 artificial neural network expert system hybrid intelligent sys-tem gear materials selection
在线阅读 下载PDF
Measurements of the center-of-mass energies of e^(+)e^(-)collisions at BESIII 被引量:1
12
作者 M.Ablikim M.N.Achasov +511 位作者 P.Adlarson S.Ahmed M.Albrecht R.Aliberti A.Amoroso M.R.An Q.An X.H.Bai Y.Bai O.Bakina R.Baldini Ferroli I.Balossino Y.Ban K.Begzsuren N.Berger M.Bertani D.Bettoni F.Bianchi J.Bloms A.Bortone I.Boyko R.A.Briere H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.F.Chang W.L.Chang G.Chelkov D.Y.Chen g.chen H.S.Chen M.L.Chen S.J.Chen X.R.Chen Y.B.Chen Z.J.Chen W.S.Cheng G.Cibinetto F.Cossio X.F.Cui H.L.Dai X.C.Dai A.Dbeyssi R.E.de Boer D.Dedovich Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori Y.Ding C.Dong J.Dong L.Y.Dong M.Y.Dong X.Dong S.X.Du Y.L.Fan J.Fang S.S.Fang Y.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng M.Fritsch C.D.Fu Y.Gao Y.Gao Y.Gao Y.G.Gao I.Garzia P.T.Ge C.Geng E.M.Gersabeck A Gilman K.Goetzen L.Gong W.X.Gong W.Gradl M.Greco L.M.Gu M.H.Gu Y.T.Gu C.Y Guan A.Q.Guo L.B.Guo R.P.Guo Y.P.Guo A.Guskov T.T.Han W.Y.Han X.Q.Hao F.A.Harris K.L.He F.H.Heinsius C.H.Heinz T.Held Y.K.Heng C.Herold M.Himmelreich T.Holtmann G.Y.Hou Y.R.Hou Z.L.Hou H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang L.Q.Huang X.T.Huang Y.P.Huang Z.Huang T.Hussain N Husken W.Ikegami Andersson W.Imoehl M.Irshad S.Jaeger S.Janchiv Q.Ji Q.P.Ji X.B.Ji X.L.Ji Y.Y.Ji H.B.Jiang X.S.Jiang J.B.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing T.Johansson N.Kalantar-Nayestanaki X.S.Kang R.Kappert M.Kavatsyuk B.C.Ke I.K.Keshk A.Khoukaz P.Kiese R.Kiuchi R.Kliemt L.Koch O.B.Kolcu B.Kopf M.Kuemmel M.Kuessner A.Kupsc M.G.Kurth W.Kuhn J.J.Lane J.S.Lange P.Larin A.Lavania L.Lavezzi Z.H.Lei H.Leithoff M.Lellmann T.Lenz C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.Li H.Li H.B.Li H.J.Li J.L.Li J.Q.Li J.S.Li Ke Li L.K.Li Lei Li P.R.Li S.Y.Li W.D.Li W.G.Li X.H.Li X.L.Li Xiaoyu Li Z.Y.Li H.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L. Z. Liao J.Libby C.X.Lin B.J.Liu C.X.Liu D.Liu F.H.Liu Fang Liu Feng Liu H.B.Liu H.M.Liu Huanhuan Liu Huihui Liu J.B.Liu J.L.Liu J.Y.Liu K.Liu K.Y.Liu L.Liu M.H.Liu P.L.Liu Q.Liu Q.Liu S.B.Liu Shuai Liu T.Liu W.M.Liu X.Liu Y.Liu Y.B.Liu Z.A.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.D.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu C.L.Luo M.X.Luo P.W.Luo T.Luo X.L.Luo X.R.Lyu F.C.Ma H.L.Ma L.L.Ma M.M.Ma Q.M.Ma R.Q.Ma R.T.Ma X.X.Ma X.Y.Ma F.E.Maas M.Maggiora S.Maldaner S.Malde Q.A.Malik A.Mangoni Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri T.J.Min R.E.Mitchell X.H.Mo N.Yu.Muchnoi H.Muramatsu S.Nakhoul Y.Nefedov F.Nerling I.B.Nikolaev Z.Ning S.Nisar S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak A.Pathak P.Patteri M.Pelizaeus H.P.Peng K.Peters J.Pettersson J.L.Ping R.G.Ping S.Pogodin R.Poling V.Prasad H.Qi H.R.Qi K.H.Qi M.Qi T.Y.Qi S.Qian W.B.Qian Z.Qian C.F.Qiao L.Q.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu S.Q.Qu K.H.Rashid K.Ravindran C.F.Redmer A.Rivetti V.Rodin M.Rolo G.Rong Ch.Rosner M.Rump H.S.Sang A.Sarantsev Y.Schelhaas C.Schnier K.Schoenning M.Scodeggio D.C.Shan W.Shan X.Y.Shan J.F.Shangguan M.Shao C.P.Shen H.F.Shen P.X.Shen X.Y.Shen H.C.Shi R.S.Shi X.Shi X.D Shi J.J.Song W.M.Song Y.X.Song S.Sosio S.Spataro K.X.Su P.P.Su F.F.Sui G.X.Sun H.K.Sun J.F.Sun L.Sun S.S.Sun T.Sun W.Y.Sun W.Y.Sun X Sun Y.J.Sun Y.K.Sun Y.Z.Sun Z.T.Sun Y.H.Tan Y.X.Tan C.J.Tang G.Y.Tang J.Tang J.X.Teng V.Thoren W.H.Tian Y.T.Tian I.Uman B.Wang C.W.Wang D.Y.Wang H.J.Wang H.P.Wang K.Wang L.L.Wang M.Wang M.Z.Wang Meng Wang W.Wang W.H.Wang W.P.Wang X.Wang X.F.Wang X.L.Wang Y.Wang Y.Wang Y.D.Wang Y.F.Wang Y.Q.Wang Y.Y.Wang Z.Wang Z.Y.Wang Ziyi Wang Zongyuan Wang D.H.Wei F.Weidner S.P.Wen D.J.White U.Wiedner G.Wilkinson M.Wolke L.Wollenberg J.F.Wu L.H.Wu L.J.Wu X.Wu Z.Wu L.Xia H.Xiao S.Y.Xiao Z.J.Xiao X.H.Xie Y.G.Xie Y.H.Xie T.Y.Xing G.F.Xu Q.J.Xu W.Xu X.P.Xu Y.C.Xu F.Yan L.Yan W.B.Yan W.C.Yan Xu Yan H.J.Yang H.X.Yang L.Yang S.L.Yang Y.X.Yang Yifan Yang Zhi Yang M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu T.Yu C. Z. Yuan L.Yuan X.Q.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.A.Zafar X.Zeng Zeng Y.Zeng A.Q.Zhang B.X.Zhang Guangyi Zhang H.Zhang H.H.Zhang H.H.Zhang H.Y.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.W.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang Jiawei Zhang L.M.Zhang L.Q.Zhang Lei Zhang S.Zhang S.F.Zhang Shulei Zhang X.D.Zhang X.Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Yan Zhang Yao Zhang Z.Y.Zhang G.Zhao J.Zhao J.Y.Zhao J.Z.Zhao Lei Zhao Ling Zhao M.G.Zhao Q.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng J.P.Zheng Y.H.Zheng B.Zhong C.Zhong L.P.Zhou Q.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu S.H.Zhu T.J.Zhu W.J.Zhu W.J.Zhu Y.C.Zhu Z.A.Zhu B.S.Zou J.H.Zou 《Chinese Physics C》 SCIE CAS CSCD 2021年第10期7-15,共9页
During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the ... During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the study of excited charmonium and charmoniumlike states.By analyzing the di-muon process e^(+)e^(-)→(γISR=FSR)μ^(+)μ^(-),we measure the center-of-mass energies of the data samples with a precision of 0.6 MeV.Through a run-by-run study,we find that the center-of-mass energies were stable throughout most of the data-collection period. 展开更多
关键词 center-of-mass ENERGY e^(+)e^(-) ANNIHILATION BESIII
原文传递
Precise measurement of the χ_(c 0) resonance parameters and branching fractions ofχ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−)
13
作者 M.Ablikim M.N.Achasov +669 位作者 P.Adlarson O.Afedulidis X.C.Ai R.Aliberti A.Amoroso Y.Bai O.Bakina I.Balossino Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin X.Y.Chai J.F.Chang G.R.Che Y.Z.Che G.Chelkov C.Chen C.H.Chen Chao Chen g.chen H.S.Chen H.Y.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.Y.Chen S.K.Choi G.Cibinetto F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denisenko M.Destefanis F.De Mori B.Ding X.X.Ding Y.Ding Y.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du Y.Y.Duan Z.H.Duan P.Egorov Y.H.Fan J.Fang J.Fang S.S.Fang W.X.Fang Y.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng Y.T.Feng M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao X.B.Gao Y.N.Gao Yang Gao S.Garbolino I.Garzia L.Ge P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck A.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han F.Hanisch X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou B.Y.Hu H.M.Hu J.F.Hu Q.P.Hu S.L.Hu T.Hu Y.Hu G.S.Huang K.X.Huang L.Q.Huang X.T.Huang Y.P.Huang Y.S.Huang T.Hussain F.Hölzken N.Hüsken N.in der Wiesche J.Jackson S.Janchiv J.H.Jeong Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji X.Q.Jia Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.S.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui N.Kumar A.Kupsc W.Kühn L.Lavezzi T.T.Lei Z.H.Lei M.Lellmann T.Lenz C.Li C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li K.Li K.L.Li L.J.Li L.K.Li Lei Li M.H.Li P.R.Li Q.M.Li Q.X.Li R.Li S.X.Li T.Li T.Y.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Y.Li X.Z.Li Y.G.Li Z.J.Li Z.Y.Li C.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao Y.P.Liao J.Libby A.Limphirat C.C.Lin C.X.Lin D.X.Lin T.Lin B.J.Liu B.X.Liu C.Liu C.X.Liu F.Liu F.H.Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.H.Liu H.M.Liu Huihui Liu J.B.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu X.Liu X.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu Z.H.Lu C.L.Luo J.R.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu Y.F.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma L.R.Ma M.M.Ma Q.M.Ma R.Q.Ma T.Ma X.T.Ma X.Y.Ma Y.M.Ma F.E.Maas I.MacKay M.Maggiora S.Malde Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling L.S.Nie I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu Y.Niu S.L.Olsen S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.Qi H.R.Qi M.Qi T.Y.Qi S.Qian W.B.Qian C.F.Qiao X.K.Qiao J.J.Qin L.Q.Qin L.Y.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu Z.H.Qu C.F.Redmer K.J.Ren A.Rivetti M.Rolo G.Rong Ch.Rosner M.Q.Ruan S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan Z.J.Shang J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.Shi J.L.Shi J.Y.Shi Q.Q.Shi S.Y.Shi X.Shi J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler S.S Su Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun W.Y.Sun Y.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang J.J.Tang Y.A.Tang L.Y.Tao Q.T.Tao M.Tat J.X.Teng V.Thoren W.H.Tian Y.Tian Z.F.Tian I.Uman Y.Wan S.J.Wang B.Wang B.L.Wang Bo Wang D.Y.Wang F.Wang H.J.Wang J.J.Wang J.P.Wang K.Wang L.L.Wang M.Wang N.Y.Wang S.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.H.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Z.Wang Z.L.Wang Z.Y.Wang Ziyi Wang D.H.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke L.Wollenberg C.Wu J.F.Wu L.H.Wu L.J.Wu X.Wu X.H.Wu Y.Wu Y.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang T.Xiang D.Xiao G.Y.Xiao S.Y.Xiao Y.L.Xiao Z.J.Xiao C.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu M.Xu Q.J.Xu Q.N.Xu W.Xu W.L.Xu X.P.Xu Y.Xu Y.C.Xu Z.S.Xu F.Yan L.Yan W.B.Yan W.C.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang J.H.Yang T.Yang Y.Yang Y.F.Yang Y.F.Yang Y.X.Yang Z.W.Yang Z.P.Yao M.Ye M.H.Ye J.H.Yin Junhao Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu M.C.Yu T.Yu X.D.Yu Y.C.Yu C.Z.Yuan J.Yuan J.Yuan L.Yuan S.C.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.A.Zafar F.R.Zeng S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.C.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang H.Zhang H.Zhang H.C.Zhang H.H.Zhang H.H.Zhang H.Q.Zhang H.R.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.S.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang P.Zhang Q.Y.Zhang R.Y.Zhang S.H.Zhang Shulei Zhang X.M.Zhang X.Y Zhang X.Y.Zhang Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Yan Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.Y.Zhang Z.Y.Zhang Z.Z.Zhang G.Zhao J.Y.Zhao J.Z.Zhao L.Zhao L.Zhao M.G.Zhao N.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng B.M.Zheng J.P.Zheng W.J.Zheng Y.H.Zheng B.Zhong X.Zhong H.Zhou J.Y.Zhou L.P.Zhou S.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou Z.C.Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu K.S.Zhu L.Zhu L.X.Zhu S.H.Zhu T.J.Zhu W.D.Zhu Y.C.Zhu Z.A.Zhu J.H.Zou J.Zu 《Chinese Physics C》 2025年第9期1-11,共11页
By analyzing ψ(3686) data sample containing (107.7±0.6)×10^(6) events taken with the BESIII detector at the BEPCII storage ring in 2009,the χ_(c 0) resonance parameters are precisely measured using χ_(c 0... By analyzing ψ(3686) data sample containing (107.7±0.6)×10^(6) events taken with the BESIII detector at the BEPCII storage ring in 2009,the χ_(c 0) resonance parameters are precisely measured using χ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−) events.The mass of χ_(c 0) is determined to be M (χ_(c 0))=(3415.63±0.07±0.07±0.07)MeV/c^(2),and its full width is F (χ_(c 0))=(12.52±0.12±0.13)MeV,where the first uncertainty is statistical,the second systematic,and the third for mass comes from χ_(c 2) mass uncertainty.These measurements improve the precision of χ_(c 0) mass by a factor of four and width by one order of magnitude over the previous individual measurements,and significantly boost our knowledge about the charmonium spectrum.Together with additional (345.4±2.6)×10^(6)(3686) data events taken in 2012,the decay branching fractions of χ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−) are measured as well,with precision improved by a factor of three compared to previous measurements.These χ_(c 0) decay branching fractions provide important inputs for the study of glueballs. 展开更多
关键词 χ_(c 0) BESII CHARMONIUM resonance parameter branching fraction
原文传递
Search for radiative leptonic decay D^(+)→γe^(+)ν_(e) using deep learning
14
作者 M.Ablikim M.N.Achasov +712 位作者 P.Adlarson X.C.Ai R.Aliberti A.Amoroso Q.An Y.Bai O.Bakina Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai M.H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin X.Y.Chai J.F.Chang G.R.Che Y.Z.Che G.Chelkov C.Chen C.H.Chen Chao Chen g.chen H.S.Chen H.Y.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen X.Y.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.K.Chen S.K.Choi X.Chu G.Cibinetto F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Ding X.X.Ding Y.Ding Y.Ding Y.X.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du S.X.Du Y.Y.Duan Z.H.Duan P.Egorov G.F.Fan J.J.Fan Y.H.Fan J.Fang J.Fang S.S.Fang W.X.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng Y.T.Feng M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao X.B.Gao Y.Gao Y.N.Gao Y.N.Gao Y.Y.Gao S.Garbolino I.Garzia P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck A.Gilman K.Goetzen J.D.Gong L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han F.Hanisch K.D.Hao X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou H.M.Hu J.F.Hu Q.P.Hu S.L.Hu T.Hu Y.Hu Z.M.Hu G.S.Huang K.X.Huang L.Q.Huang P.Huang X.T.Huang Y.P.Huang Y.S.Huang T.Hussain N.Hüsken N.in der Wiesche J.Jackson Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.J.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui N.Kumar A.Kupsc W.Kühn Q.Lan W.N.Lan T.T.Lei M.Lellmann T.Lenz C.Li C.Li C.Li C.H.Li C.K.Li D.M.Li F.Li G.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li K.Li K.L.Li K.L.Li L.J.Li Lei Li M.H.Li M.R.Li P.L.Li P.R.Li Q.M.Li Q.X.Li R.Li S.X.Li T.Li T.Y.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Y.Li X.Z.Li Y.Li Y.G.Li Y.P.Li Z.J.Li Z.Y.Li C.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.B.Liao M.H.Liao Y.P.Liao J.Libby A.Limphirat C.C.Lin C.X.Lin D.X.Lin L.Q.Lin T.Lin B.J.Liu B.X.Liu C.Liu C.X.Liu F.Liu F.H.Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.H.Liu H.M.Liu Huihui Liu J.B.Liu J.J.Liu K.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu W.T.Liu X.Liu X.Liu X.L.Liu X.Y.Liu Y.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu Y.Lu Y.H.Lu Y.P.Lu Z.H.Lu C.L.Luo J.R.Luo J.S.Luo M.X.Luo T.Luo X.L.Luo Z.Y.Lv X.R.Lyu Y.F.Lyu Y.H.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma L.R.Ma Q.M.Ma R.Q.Ma R.Y.Ma T.Ma X.T.Ma X.Y.Ma Y.M.Ma F.E.Maas I.MacKay M.Maggiora S.Malde Q.A.Malik Y.J.Mao Z.P.Mao S.Marcello F.M.Melendi Y.H.Meng Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling L.S.Nie I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters J.L.Ping R.G.Ping S.Plura F.Z.Qi H.R.Qi M.Qi S.Qian W.B.Qian C.F.Qiao J.H.Qiao J.J.Qin J.L.Qin L.Q.Qin L.Y.Qin P.B.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu Z.H.Qu C.F.Redmer A.Rivetti M.Rolo G.Rong S.S.Rong F.Rosini Ch.Rosner M.Q.Ruan S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan Z.J.Shang J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.Shi J.L.Shi J.Y.Shi S.Y.Shi X.Shi H.L.Song J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler S.S Su Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun Y.C.Sun Y.H.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang J.J.Tang L.F.Tang Y.A.Tang L.Y.Tao M.Tat J.X.Teng J.Y.Tian W.H.Tian Y.Tian Z.F.Tian I.Uman B.Wang B.Wang Bo Wang C.Wang Cong Wang D.Y.Wang H.J.Wang J.J.Wang K.Wang L.L.Wang L.W.Wang M.Wang M.Wang N.Y.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.H.Wang Y.J.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Yuan Wang Z.Wang Z.L.Wang Z.L.Wang Z.Q.Wang Z.Y.Wang D.H.Wei H.R.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke C.Wu J.F.Wu L.H.Wu L.J.Wu L.J.Wu Lianjie Wu S.G.Wu S.M.Wu X.Wu X.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang D.Xiao G.Y.Xiao H.Xiao Y.L.Xiao Z.J.Xiao C.Xie K.J.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu H.Y.Xu M.Xu Q.J.Xu Q.N.Xu T.D.Xu W.Xu W.L.Xu X.P.Xu Y.Xu Y.Xu Y.C.Xu Z.S.Xu F.Yan H.Y.Yan L.Yan W.B.Yan W.C.Yan W.H.Yan W.P.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang J.H.Yang R.J.Yang T.Yang Y.Yang Y.F.Yang Y.H.Yang Y.Q.Yang Y.X.Yang Y.Z.Yang M.Ye M.H.Ye Z.J.Ye Junhao Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu L.Q.Yu M.C.Yu T.Yu X.D.Yu Y.C.Yu C.Z.Yuan H.Yuan J.Yuan J.Yuan L.Yuan S.C.Yuan X.Q.Yuan Y.Yuan Z.Y.Yuan C.X.Yue Ying Yue A.A.Zafar S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang G.Y.Zhang H.Zhang H.Zhang H.C.Zhang H.H.Zhang H.Q.Zhang H.R.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.S.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang N.Zhang P.Zhang Q.Zhang Q.Y.Zhang R.Y.Zhang S.H.Zhang Shulei Zhang X.M.Zhang X.Y Zhang X.Y.Zhang Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Y.P.Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.L.Zhang Z.X.Zhang Z.Y.Zhang Z.Y.Zhang Z.Z.Zhang Zh.Zh.Zhang G.Zhao J.Y.Zhao J.Z.Zhao L.Zhao L.Zhao M.G.Zhao N.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.L.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng B.M.Zheng J.P.Zheng W.J.Zheng X.R.Zheng Y.H.Zheng B.Zhong C.Zhong H.Zhou J.Q.Zhou J.Y.Zhou S.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu K.S.Zhu L.Zhu L.X.Zhu S.H.Zhu T.J.Zhu W.D.Zhu W.D.Zhu W.J.Zhu W.Z.Zhu Y.C.Zhu Z.A.Zhu X.Y.Zhuang J.H.Zou J.Zu 《Chinese Physics C》 2025年第8期1-15,共15页
Using 20.3 fb^(-1)of e^(+)e^(-)annihilation data collected at a center-of-mass energy of 3.773 GeV with the BESⅢdetector,we report on an improved search for the radiative leptonic decay D^(+)→γe^(+)ve.An upper limi... Using 20.3 fb^(-1)of e^(+)e^(-)annihilation data collected at a center-of-mass energy of 3.773 GeV with the BESⅢdetector,we report on an improved search for the radiative leptonic decay D^(+)→γe^(+)ve.An upper limit on its partial branching fraction for photon energies E_(γ)>10 MeV was determined to be 1.2×10^(-5)at a 90%confidence level;this excludes most current theoretical predictions.A sophisticated deep learning approach,which includes thorough validation and is based on the Transformer architecture,was implemented to efficiently distinguish the signal from massive backgrounds. 展开更多
关键词 charmed hadron radiative leptonic decay BESIl experiment deep learning
原文传递
Search for the lepton number violation decay ϕ→π^(+)π^(+)e^(−)e^(−)via J/ψ→ϕη^(*)
15
作者 M.Ablikim M.N.Achasov +627 位作者 P.Adlarson O.Afedulidis X.C.Ai R.Aliberti A.Amoroso M.R.An Q.An Y.Bai O.Bakina I.Balossino Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.F.Chang G.R.Che Y.Z.Che G.Chelkov C.Chen Chao Chen g.chen H.S.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.Y.Chen S.K.Choi G.Cibinetto S.C.Coen F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Ding X.X.Ding Y.Ding Y.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du Z.H.Duan P.Egorov Y.H.Fan J.Fang S.S.Fang W.X.Fang Y.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng K.Fischer M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao Y.N.Gao Yang Gao S.Garbolino I.Garzia L.Ge P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck A.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez T.T.Han W.Y.Han X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou B.Y.Hu H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang K.X.Huang L.Q.Huang X.T.Huang Y.P.Huang T.Hussain F.Hölzken N.Hüsken N.in der Wiesche J.Jackson S.Jaeger S.Janchiv Q.Ji Q.P.Ji X.B.Ji X.L.Ji Y.Y.Ji X.Q.Jia Z.K.Jia H.B.Jiang P.C.Jiang S.S.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi R.Kliemt O.B.Kolcu B.Kopf M.Kuessner X.Kui N.Kumar A.Kupsc W.Kühn J.J.Lane P.Larin A.Lavania L.Lavezzi T.T.Lei Z.H.Lei M.Lellmann T.Lenz C.Li C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li J.W.Li K.Li K.L.Li L.J.Li L.K.Li Lei Li M.H.Li P.R.Li Q.X.Li S.X.Li T.Li W.D.Li W.G.Li X.H.Li X.L.Li X.Y.Li Y.G.Li Z.J.Li Z.X.Li C.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.Z.Liao Y.P.Liao J.Libby A.Limphirat D.X.Lin T.Lin B.J.Liu B.X.Liu C.Liu C.X.Liu F.Liu F.H.Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.H.Liu H.M.Liu Huihui Liu J.B.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu X.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu Z.H.Lu C.L.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu Y.F.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma M.M.Ma Q.M.Ma R.Q.Ma X.Y.Ma Y.M.Ma F.E.Maas M.Maggiora S.Malde A.Mangoni Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu Y.Niu S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan P.Patteri Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.Qi H.R.Qi M.Qi T.Y.Qi S.Qian W.B.Qian C.F.Qiao X.K.Qiao J.J.Qin L.Q.Qin L.Y.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu S.Q.Qu F.Redmer K.J.Ren A.Rivetti M.Rolo G.Rong Ch.Rosner M.Q.Ruan S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.Shi H.C.Shi J.L.Shi J.Y.Shi Q.Q.Shi X.Shi J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun W.Y.Sun Y.Sun Y.J.Sun Y.Z.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang Y.A.Tang L.Y.Tao Q.T.Tao M.Tat J.X.Teng V.Thoren W.H.Tian W.H.Tian Y.Tian Z.F.Tian I.Uman Y.Wan S.J.Wang B.Wang B.L.Wang Bo Wang C.W.Wang D.Y.Wang F.Wang H.J.Wang J.P.Wang K.Wang L.L.Wang L.W.Wang M.Wang N.Y.Wang S.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang Y.Wang Y.D.Wang Y.F.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Z.Wang Z.L.Wang Z.Y.Wang Ziyi Wang D.H.Wei F.Weidner S.P.Wen Wenzel U.Wiedner G.Wilkinson M.Wolke L.Wollenberg C.Wu J.F.Wu L.H.Wu L.J.Wu X.Wu X.H.Wu Y.Wu Y.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian T.Xiang D.Xiao G.Y.Xiao S.Y.Xiao Y.L.Xiao Z.J.Xiao C.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu M.Xu Q.J.Xu Q.N.Xu W.Xu W.L.Xu X.P.Xu Y.Xu Y.C.Xu Z.P.Xu Z.S.Xu F.Yan L.Yan W.B.Yan W.C.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang T.Yang Y.Yang Y.F.Yang Y.F.Yang Y.X.Yang Z.W.Yang Z.P.Yao M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu T.Yu X.D.Yu Y.C.Yu C.Z.Yuan L.Yuan S.C.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.A.Zafar F.R.Zeng S.H.Zeng X.Zeng Y.Zeng X.Y.Zhai Y.C.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang H.Zhang H.C.Zhang H.H.Zhang H.H.Zhang H.Q.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang P.Zhang Q.Y.Zhang S.H.Zhang Shulei Zhang X.D.Zhang X.M.Zhang X.Y.Zhang Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.X.Zhang Yan Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.Y.Zhang Z.Y.Zhang G.Zhao J.Y.Zhao J.Z.Zhao L.Zhao Lei Zhao M.G.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng J.P.Zheng W.J.Zheng Y.H.Zheng B.Zhong X.Zhong L.P.Zhou S.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou J.Zhu K.Zhu K.J.Zhu L.Zhu L.X.Zhu S.H.Zhu S.Q.Zhu T.J.Zhu Y.C.Zhu Z.A.Zhu J.H.Zou J.Zu BESIII Collaboration 《Chinese Physics C》 2025年第4期1-10,共10页
Using an electron-positron collision data sample corresponding to(1.0087±0.0044)×10^(10)events collected using the BESIII detector at the BEPCII collider,we firstly search for the lepton number violation de... Using an electron-positron collision data sample corresponding to(1.0087±0.0044)×10^(10)events collected using the BESIII detector at the BEPCII collider,we firstly search for the lepton number violation decayφ→π^(+)π^(+)e^(-)e^(-)via J/ψ→φη.No obviously signals are found.The upper limit on the branching fraction ofφ→π^(+)π^(+)e^(-)e^(-)is set to be 1.3×10^(-5)at the 90%confidence level. 展开更多
关键词 Lepton number violation matter anti-matter asymmetry neutrinoless double beta decay
原文传递
Search for the lepton number violation decay ω→π^(+)π^(+)e^(-)e^(-)+c.c.
16
作者 M.Ablikim M.N.Achasov +727 位作者 P.Adlarson X.C.Ai R.Aliberti A.Amoroso Q.An Y.Bai O.Bakina Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni A F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai M.H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin X.Y.Chai J.F.Chang G.R.Che Y.Z.Che C.H.Chen Chao Chen g.chen H.S.Chen H.Y.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen X.Y.Chen Y.B.Chen Y.Q.Chen Y.Q.Chen Z.Chen Z.J.Chen Z.K.Chen S.K.Choi X.Chu G.Cibinetto F.Cossio J.Cottee-Meldrum J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Ding X.X.Ding Y.Ding Y.Ding Y.X.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du S.X.Du Y.Y.Duan Z.H.Duan P.Egorov G.F.Fan J.J.Fan Y.H.Fan J.Fang J.Fang S.S.Fang W.X.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng L.Feng Q.X.Feng Y.T.Feng M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao X.B.Gao Y.Gao Y.N.Gao Y.N.Gao Y.Y.Gao Z.Gao S.Garbolino I.Garzia L.Ge P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck A.Gilman K.Goetzen J.D.Gong L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han F.Hanisch K.D.Hao X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou H.M.Hu J.F.Hu Q.P.Hu S.L.Hu T.Hu Y.Hu Z.M.Hu G.S.Huang K.X.Huang L.Q.Huang P.Huang X.T.Huang Y.P.Huang Y.S.Huang T.Hussain N.Hüsken N.in der Wiesche J.Jackson Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.J.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui N.Kumar A.Kupsc W.Kühn Q.Lan W.N.Lan T.T.Lei M.Lellmann T.Lenz C.Li C.Li C.H.Li C.K.Li D.M.Li F.Li G.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li K.Li K.L.Li K.L.Li L.J.Li Lei Li M.H.Li M.R.Li P.L.Li P.R.Li Q.M.Li Q.X.Li R.Li S.X.Li T.Li T.Y.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Y.Li X.Z.Li Y.Li Y.G.Li Y.P.Li Z.J.Li Z.Y.Li C.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.B.Liao M.H.Liao Y.P.Liao J.Libby A.Limphirat C.C.Lin D.X.Lin L.Q.Lin T.Lin B.J.Liu B.X.Liu C.Liu C.X.Liu F.Liu F.H.Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.H.Liu H.M.Liu Huihui Liu J.B.Liu J.J.Liu K.Liu K.Liu K.Y.Liu Ke Liu L.C.Liu Lu Liu M.H.Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu W.T.Liu X.Liu X.Liu X.K.Liu X.L.Liu X.Y.Liu Y.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu X.L.Lu Y.Lu Y.H.Lu Y.P.Lu Z.H.Lu C.L.Luo J.R.Luo J.S.Luo M.X.Luo T.Luo X.L.Luo Z.Y.Lv X.R.Lyu Y.F.Lyu Y.H.Lyu F.C.Ma H.L.Ma Heng Ma J.L.Ma L.L.Ma L.R.Ma Q.M.Ma R.Q.Ma R.Y.Ma T.Ma X.T.Ma X.Y.Ma Y.M.Ma F.E.Maas I.MacKay M.Maggiora S.Malde Q.A.Malik H.X.Mao Y.J.Mao Z.P.Mao S.Marcello A.Marshall F.M.Melendi Y.H.Meng Z.X.Meng G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling L.S.Nie I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu C.Normand S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak Y.P.Pei M.Pelizaeus H.P.Peng X.J.Peng Y.Y.Peng K.Peters K.Petridis J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.R.Qi M.Qi S.Qian W.B.Qian C.F.Qiao J.H.Qiao J.J.Qin J.L.Qin L.Q.Qin L.Y.Qin P.B.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu Z.H.Qu J.Rademacker C.F.Redmer A.Rivetti M.Rolo G.Rong S.S.Rong F.Rosini Ch.Rosner M.Q.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan Z.J.Shang J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.Shi J.L.Shi J.Y.Shi S.Y.Shi X.Shi H.L.Song J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song Zirong Song S.Sosio S.Spataro F.Stieler S.S Su Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun Y.C.Sun Y.H.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang J.J.Tang L.F.Tang Y.A.Tang L.Y.Tao M.Tat J.X.Teng J.Y.Tian W.H.Tian Y.Tian Z.F.Tian I.Uman B.Wang B.Wang Bo Wang C.Wang C.Wang Cong Wang D.Y.Wang H.J.Wang J.J.Wang K.Wang L.L.Wang L.W.Wang M.Wang M.Wang N.Y.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.H.Wang Y.J.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Yuan Wang Z.Wang Z.L.Wang Z.L.Wang Z.Q.Wang Z.Y.Wang D.H.Wei H.R.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke C.Wu J.F.Wu L.H.Wu L.J.Wu L.J.Wu Lianjie Wu S.G.Wu S.M.Wu X.Wu X.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang D.Xiao G.Y.Xiao H.Xiao Y.L.Xiao Z.J.Xiao C.Xie K.J.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu H.Y.Xu M.Xu Q.J.Xu Q.N.Xu T.D.Xu W.Xu W.L.Xu X.P.Xu Y.Xu Y.Xu Y.C.Xu Z.S.Xu F.Yan H.Y.Yan L.Yan W.B.Yan W.C.Yan W.H.Yan W.P.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang J.H.Yang R.J.Yang T.Yang Y.Yang Y.F.Yang Y.H.Yang Y.Q.Yang Y.X.Yang Y.Z.Yang M.Ye M.H.Ye Z.J.Ye Junhao Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu L.Q.Yu M.C.Yu T.Yu X.D.Yu Y.C.Yu C.Z.Yuan H.Yuan J.Yuan J.Yuan L.Yuan S.C.Yuan X.Q.Yuan Y.Yuan Z.Y.Yuan C.X.Yue Ying Yue A.A.Zafar S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.H.Zhan Zhang A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang G.Y.Zhang H.Zhang H.Zhang H.C.Zhang H.H.Zhang H.Q.Zhang H.R.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.S.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang N.Zhang P.Zhang Q.Zhang Q.Y.Zhang R.Y.Zhang S.H.Zhang Shulei Zhang X.M.Zhang X.Y Zhang X.Y.Zhang Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Y.P.Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.L.Zhang Z.X.Zhang Z.Y.Zhang Z.Y.Zhang Z.Z.Zhang Zh.Zh.Zhang G.Zhao J.Y.Zhao J.Z.Zhao L.Zhao L.Zhao M.G.Zhao N.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.L.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng B.M.Zheng J.P.Zheng W.J.Zheng X.R.Zheng Y.H.Zheng B.Zhong C.Zhong H.Zhou J.Q.Zhou J.Y.Zhou S.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.X.Zhou Y.Z.Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu K.S.Zhu L.Zhu L.X.Zhu S.H.Zhu T.J.Zhu W.D.Zhu W.D.Zhu W.J.Zhu W.Z.Zhu Y.C.Zhu Z.A.Zhu X.Y.Zhuang J.H.Zou J.Zu BESIII Collaboration 《Chinese Physics C》 2025年第10期15-24,共10页
Lepton number violation decayω→π^(+)π^(+)e^(-)e^(-)+c.c.is searched for via J/ψ→ωηusing a data sample of(1.0087±0.0044)×10^(10)J/ψevents collected via the BESIII detector at the BEPCII collider.No s... Lepton number violation decayω→π^(+)π^(+)e^(-)e^(-)+c.c.is searched for via J/ψ→ωηusing a data sample of(1.0087±0.0044)×10^(10)J/ψevents collected via the BESIII detector at the BEPCII collider.No significant signal is observed,and the upper limit on the branching fraction ofω→π^(+)π^(+)e^(-)e^(-)+c.c.at the 90%confidence level is determined for the first time to be 2.8×10^(-6). 展开更多
关键词 lepton number violation matter anti-matter asymmetry neutrinoless double beta decay
原文传递
Search for the leptonic decay D^(+)→e^(+)ν_(e)
17
作者 M.Ablikim M.N.Achasov +668 位作者 P.Adlarson O.Afedulidis X.C.Ai R.Aliberti A.Amoroso Q.An Y.Bai O.Bakina I.Balossino Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin X.Y.Chai J.F.Chang G.R.Che Y.Z.Che G.Chelkov C.Chen C.H.Chen Chao Chen g.chen H.S.Chen H.Y.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.Y.Chen S.K.Choi G.Cibinetto F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Ding X.X.Ding Y.Ding Y.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du Y.Y.Duan Z.H.Duan P.Egorov Y.H.Fan J.Fang J.Fang S.S.Fang W.X.Fang Y.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng Y.T.Feng M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao X.B.Gao Y.N.Gao Yang Gao S.Garbolino I.Garzia L.Ge P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck A.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han F.Hanisch X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou B.Y.Hu H.M.Hu J.F.Hu S.L.Hu T.Hu Y.Hu G.S.Huang K.X.Huang L.Q.Huang X.T.Huang Y.P.Huang Y.S.Huang T.Hussain F.Hölzken N.Hüsken N.in der Wiesche J.Jackson S.Janchiv J.H.Jeong Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji X.Q.Jia Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.S.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui N.Kumar A.Kupsc W.Kühn J.J.Lane L.Lavezzi T.T.Lei Z.H.Lei M.Lellmann T.Lenz C.Li C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li K.Li K.L.Li L.J.Li L.K.Li Lei Li M.H.Li P.R.Li Q.M.Li Q.X.Li R.Li S.X.Li T.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Y.Li X.Z.Li Y.G.Li Z.J.Li Z.Y.Li C.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao Y.P.Liao J.Libby A.Limphirat C.C.Lin D.X.Lin T.Lin B.J.Liu B.X.Liu C.Liu C.X.Liu F.Liu F.H.Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.H.Liu H.M.Liu Huihui Liu J.B.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu X.Liu X.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu Z.H.Lu C.L.Luo J.R.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu Y.F.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma L.R.Ma M.M.Ma Q.M.Ma R.Q.Ma T.Ma X.T.Ma X.Y.Ma Y.M.Ma F.E.Maas I.MacKay M.Maggiora S.Malde Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling L.S.Nie I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu Y.Niu S.L.Olsen S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.Qi H.R.Qi M.Qi T.Y.Qi S.Qian W.B.Qian C.F.Qiao X.K.Qiao J.J.Qin L.Q.Qin L.Y.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu Z.H.Qu C.F.Redmer K.J.Ren A.Rivetti M.Rolo G.Rong Ch.Rosner M.Q.Ruan S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan Z.J.Shang J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.Shi H.C.Shi J.L.Shi J.Y.Shi Q.Q.Shi S.Y.Shi X.Shi J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler S.S Su Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun W.Y.Sun Y.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang M.Tang Y.A.Tang L.Y.Tao Q.T.Tao M.Tat J.X.Teng V.Thoren W.H.Tian Y.Tian Z.F.Tian I.Uman Y.Wan S.J.Wang B.Wang B.L.Wang Bo Wang D.Y.Wang F.Wang H.J.Wang J.J.Wang J.P.Wang K.Wang L.L.Wang M.Wang N.Y.Wang S.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Z.Wang Z.L.Wang Z.Y.Wang Ziyi Wang D.H.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke L.Wollenberg C.Wu J.F.Wu L.H.Wu L.J.Wu X.Wu X.H.Wu Y.Wu Y.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang T.Xiang D.Xiao G.Y.Xiao S.Y.Xiao Y.L.Xiao Z.J.Xiao C.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu M.Xu Q.J.Xu Q.N.Xu W.Xu W.L.Xu X.P.Xu Y.Xu Y.C.Xu Z.S.Xu F.Yan L.Yan W.B.Yan W.C.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang T.Yang Y.Yang Y.F.Yang Y.F.Yang Y.X.Yang Z.W.Yang Z.P.Yao M.Ye M.H.Ye J.H.Yin Junhao Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu M.C.Yu T.Yu X.D.Yu Y.C.Yu C.Z.Yuan J.Yuan J.Yuan L.Yuan S.C.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.A.Zafar F.R.Zeng S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.C.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang H.Zhang H.Zhang H.C.Zhang H.H.Zhang H.H.Zhang H.Q.Zhang H.R.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.S.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang N.Zhang P.Zhang Q.Y.Zhang R.Y.Zhang S.H.Zhang Shulei Zhang X.M.Zhang X.Y Zhang X.Y.Zhang Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Yan Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.Y.Zhang Z.Y.Zhang Z.Z.Zhang G.Zhao J.Y.Zhao J.Z.Zhao L.Zhao Lei Zhao M.G.Zhao N.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng B.M.Zheng J.P.Zheng W.J.Zheng Y.H.Zheng B.Zhong X.Zhong H.Zhou J.Y.Zhou L.P.Zhou S.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou Z.C.Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu K.S.Zhu L.Zhu L.X.Zhu S.H.Zhu T.J.Zhu W.D.Zhu Y.C.Zhu Z.A.Zhu J.H.Zou J.Zu 《Chinese Physics C》 2025年第6期1-10,共10页
We search for the leptonic decay D^(+)→e^(+)ν_(e)using an e+e-collision data sample with an integrated luminosity of 20.3 fb-1collected with the BESIII detector at a center-of-mass energy of 3.773 GeV.Significant si... We search for the leptonic decay D^(+)→e^(+)ν_(e)using an e+e-collision data sample with an integrated luminosity of 20.3 fb-1collected with the BESIII detector at a center-of-mass energy of 3.773 GeV.Significant signal is not observed,and an upper limit on the branching fraction of D^(+)→e^(+)ν_(e)is set as 9.7×10^(-7),at a confidence level of 90%.Our upper limit is an order of magnitude smaller than the previous limit for this decay mode. 展开更多
关键词 BESII charm physics leptonic decay
原文传递
Search for Cabibbo-suppressed decays Λ_(c)^(+)→Σ^(0)K^(+)π^(0) and Λ_(c)^(+)→Σ^(0)K^(+)π^(+)π^(−)
18
作者 M.Ablikim M.N.Achasov +691 位作者 P.Adlarson X.C.Ai R.Aliberti A.Amoroso Q.An Y.Bai O.Bakina Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai M.H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin X.Y.Chai J.F.Chang G.R.Che Y.Z.Che G.Chelkov C.Chen C.H.Chen Chao Chen g.chen H.S.Chen H.Y.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.K.Chen S.K.Choi X.Chu G.Cibinetto F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Ding X.X.Ding Y.Ding Y.Ding Y.X.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du Y.Y.Duan Z.H.Duan P.Egorov G.F.Fan J.J.Fan Y.H.Fan J.Fang J.Fang S.S.Fang W.X.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng Y.T.Feng M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao X.B.Gao Y.N.Gao Y.N.Gao Y.Y.Gao Yang Gao S.Garbolino I.Garzia P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck A.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han F.Hanisch K.D.Hao X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou B.Y.Hu H.M.Hu J.F.Hu Q.P.Hu S.L.Hu T.Hu Y.Hu Z.M.Hu G.S.Huang K.X.Huang L.Q.Huang P.Huang X.T.Huang Y.P.Huang Y.S.Huang T.Hussain N.Hüsken N.in der Wiesche J.Jackson S.Janchiv Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.J.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui N.Kumar A.Kupsc W.Kühn Q.Lan W.N.Lan T.T.Lei Z.H.Lei M.Lellmann T.Lenz C.Li C.Li C.H.Li C.K.Li Cheng Li D.M.Li F.Li G.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li K.Li K.L.Li K.L.Li L.J.Li Lei Li M.H.Li M.R.Li P.L.Li P.R.Li Q.M.Li Q.X.Li R.Li T.Li T.Y.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Y.Li X.Z.Li Y.Li Y.G.Li Z.J.Li Z.Y.Li C.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.B.Liao M.H.Liao Y.P.Liao J.Libby A.Limphirat C.C.Lin C.X.Lin D.X.Lin L.Q.Lin T.Lin B.J.Liu B.X.Liu C.Liu C.X.Liu F.Liu F.H.Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.H.Liu H.M.Liu Huihui Liu J.B.Liu J.J.Liu K.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu W.T.Liu X.Liu X.Liu X.Y.Liu Y.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu Y.Lu Y.H.Lu Y.P.Lu Z.H.Lu C.L.Luo J.R.Luo J.S.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu Y.F.Lyu Y.H.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma L.R.Ma Q.M.Ma R.Q.Ma R.Y.Ma T.Ma X.T.Ma X.Y.Ma Y.M.Ma F.E.Maas I.MacKay M.Maggiora S.Malde Y.J.Mao Z.P.Mao S.Marcello Y.H.Meng Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling L.S.Nie I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters e J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.R.Qi M.Qi S.Qian W.B.Qian C.F.Qiao J.H.Qiao J.J.Qin J.L.Qin L.Q.Qin L.Y.Qin P.B.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu Z.H.Qu C.F.Redmer A.Rivetti M.Rolo G.Rong S.S.Rong Ch.Rosner M.Q.Ruan S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan Z.J.Shang J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.Shi J.L.Shi J.Y.Shi S.Y.Shi X.Shi H.L.Song J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler S.S Su Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun Y.C.Sun Y.H.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang L.F.Tang M.Tang Y.A.Tang L.Y.Tao M.Tat J.X.Teng V.Thoren J.Y.Tian W.H.Tian Y.Tian Z.F.Tian I.Uman B.Wang B.Wang Bo Wang C.Wang D.Y.Wang H.J.Wang J.J.Wang K.Wang L.L.Wang L.W.Wang M.Wang M.Wang N.Y.Wang S.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.H.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Yuan Wang Z.Wang Z.L.Wang Z.Y.Wang D.H.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke C.Wu J.F.Wu L.H.Wu L.J.Wu Lianjie Wu S.G.Wu S.M.Wu X.Wu X.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang T.Xiang D.Xiao G.Y.Xiao H.Xiao Y.L.Xiao Z.J.Xiao C.Xie K.J.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu M.Xu Q.J.Xu Q.N.Xu W.L.Xu X.P.Xu Y.Xu Y.C.Xu Z.S.Xu F.Yan H.Y.Yan L.Yan W.B.Yan W.C.Yan W.P.Yan X.Q.Yan H.J.Yang f H.L.Yang H.X.Yang J.H.Yang R.J.Yang T.Yang Y.Yang Y.F.Yang Y.Q.Yang Y.X.Yang Y.Z.Yang M.Ye M.H.Ye Junhao Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu M.C.Yu T.Yu X.D.Yu Y.C.Yu C.Z.Yuan H.Yuan J.Yuan J.Yuan L.Yuan S.C.Yuan Y.Yuan Z.Y.Yuan C.X.Yue Ying Yue A.A.Zafar S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang G.Y.Zhang H.Zhang H.Zhang H.C.Zhang H.H.Zhang H.Q.Zhang H.R.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.S.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang N.Zhang P.Zhang Q.Zhang Q.Y.Zhang R.Y.Zhang S.H.Zhang Shulei Zhang X.M.Zhang X.Y Zhang X.Y.Zhang Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.L.Zhang Z.X.Zhang Z.Y.Zhang Z.Y.Zhang Z.Z.Zhang Zh.Zh.Zhang G.Zhao J.Y.Zhao J.Z.Zhao L.Zhao Lei Zhao M.G.Zhao N.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.L.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng B.M.Zheng J.P.Zheng W.J.Zheng X.R.Zheng Y.H.Zheng B.Zhong X.Zhong H.Zhou J.Y.Zhou S.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou Z.C.Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu K.S.Zhu L.Zhu L.X.Zhu S.H.Zhu T.J.Zhu W.D.Zhu W.J.Zhu W.Z.Zhu Y.C.Zhu Z.A.Zhu X.Y.Zhuang J.H.Zou J.Zu 《Chinese Physics C》 2025年第7期14-26,共13页
Utilizing 4.5 fb^(-1)ofe^(+)e^(-)annihilation data collected at center-of-mass energies ranging from 4599.53 MeV to 4698.82 MeV by the BESIII detector at the BEPCII collider,we searched for singly Cabibbo-suppressed h... Utilizing 4.5 fb^(-1)ofe^(+)e^(-)annihilation data collected at center-of-mass energies ranging from 4599.53 MeV to 4698.82 MeV by the BESIII detector at the BEPCII collider,we searched for singly Cabibbo-suppressed hadronic decaysΛ_(c)^(+)→Σ^(0)K^(+)π^(0)andΛ_(c)^(+)→Σ^(0)K^(+)π^(+)π^(−)and with a single-tag method.No significant signals were observed for both decays.The upper limits on the branching fractions at the 90%confidence level were determined to be 5.0×10^(-4)for and forΛ_(c)^(+)→Σ^(0)K^(+)π^(0)and 6.5×10^(-4)forΛ_(c)^(+)→Σ^(0)K^(+)π^(+)π^(−). 展开更多
关键词 Charmed baryon SCS decay BESIII Experiment
原文传递
Future Physics Programme of BESⅢ 被引量:547
19
作者 M.Ablikim M.N.Achasov +486 位作者 P.Adlarson S.Ahmed M.Albrecht M.Alekseev A.Amoroso F.F.An Q.An Y.Bai O.Bakina R.Baldini Ferroli Y.Ban K.Begzsuren J.V.Bennett N.Berger M.Bertani D.Bettoni F.Bianchi J Biernat J.Bloms I.Boyko R.A.Briere L.Calibbi H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.Chai J.F.Chang W.L.Chang J.Charles G.Chelkov Chen g.chen H.S.Chen J.C.Chen M.L.Chen S.J.Chen Y.B.Chen H.Y.Cheng W.Cheng G.Cibinetto F.Cossio X.F.Cui H.L.Dai J.P.Dai X.C.Dai A.Dbeyssi D.Dedovich Z.Y.Deng A.Denig Denysenko M.Destefanis S.Descotes-Genon F.De Mori Y.Ding C.Dong J.Dong L.Y.Dong M.Y.Dong Z.L.Dou S.X.Du S.I.Eidelman J.Z.Fan J.Fang S.S.Fang Y.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng M.Fritsch C.D.Fu Y.Fu Q.Gao X.L.Gao Y.Gao Y.Gao Y.G.Gao Z.Gao B.Garillon I.Garzia E.M.Gersabeck A.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl M.Greco L.M.Gu M.H.Gu Y.T.Gu A.Q.Guo F.K.Guo L.B.Guo R.P.Guo Y.P.Guo A.Guskov S.Han X.Q.Hao F.A.Harris K.L.He F.H.Heinsius T.Held Y.K.Heng Y.R.Hou Z.L.Hou H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang J.S.Huang X.T.Huang X.Z.Huang Z.L.Huang N.Huesken T.Hussain W.Ikegami Andersson W.Imoehl M.Irshad Q.Ji Q.P.Ji X.B.Ji X.L.Ji H.L.Jiang X.S.Jiang X.Y.Jiang J.B.Jiao Z.Jiao D.P.Jin S.Jin Y.Jin T.Johansson N.Kalantar-Nayestanaki X.S.Kang R.Kappert M.Kavatsyuk B.C.Ke I.K.Keshk T.Khan A.Khoukaz P.Kiese R.Kiuchi R.Kliemt L.Koch O.B.Kolcu B.Kopf M.Kuemmel M.Kuessner A.Kupsc M.Kurth M.G.Kurth W.Kuhn J.S.Lange P.Larin L.Lavezzi H.Leithoff T.Lenz C.Li Cheng Li D.M.Li F.Li F.Y.Li G.Li H.B.Li H.J.Li J.C.Li J.W.Li Ke Li L.K.Li Lei Li P.L.Li P.R.Li Q.Y.Li W.D.Li W.G.Li X.H.Li X.L.Li X.N.Li X.Q.Li Z.B.Li H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.Z.Liao J.Libby C.X.Lin D.X.Lin Y.J.Lin B.Liu B.J.Liu C.X.Liu D.Liu D.Y.Liu F.H.Liu Fang Liu Feng Liu H.B.Liu H.M.Liu Huanhuan Liu Huihui Liu J.B.Liu J.Y.Liu K.Y.Liu Ke Liu Q.Liu S.B.Liu T.Liu X.Liu X.Y.Liu Y.B.Liu Z.A.Liu Zhiqing Liu Y.F.Long X.C.Lou H.J.Lu J.D.Lu J.G.Lu Y.Lu Y.P.Lu C.L.Luo M.X.Luo P.W.Luo T.Luo X.L.Luo S.Lusso X.R.Lyu F.C.Ma H.L.Ma L.L.Ma M.M.Ma Q.M.Ma X.N.Ma X.X.Ma X.Y.Ma Y.M.Ma F.E.Maas M.Maggiora S.Maldaner S.Malde Q.A.Malik A.Mangoni Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri J.Min T.J.Min R.E.Mitchell X.H.Mo Y.J.Mo C.Morales Morales N.Yu.Muchnoi H.Muramatsu A.Mustafa S.Nakhoul Y.Nefedov F.Nerling I.B.Nikolaev Z.Ning S.Nisar S.L.Niu S.L.Olsen Q.Ouyang S.Pacetti Y.Pan M.Papenbrock P.Patteri M.Pelizaeus H.P.Peng K.Peters A.A.Petrov J.Pettersson J.L.Ping R.G.Ping A.Pitka R.Poling V.Prasad M.Qi T.Y.Qi S.Qian C.F.Qiao N.Qin X.P.Qin X.S.Qin Z.H.Qin J.F.Qiu S.Q.Qu K.H.Rashid C.F.Redmer M.Richter M.Ripka A.Rivetti V.Rodin M.Rolo G.Rong J.L.Rosner Ch.Rosner M.Rump A.Sarantsev M.Savrie K.Schoenning W.Shan X.Y.Shan M.Shao C.P.Shen P.X.Shen X.Y.Shen H.Y.Sheng X.Shi X.D Shi J.J.Song Q.Q.Song X.Y.Song S.Sosio C.Sowa S.Spataro F.F.Sui G.X.Sun J.F.Sun L.Sun S.S.Sun X.H.Sun Y.J.Sun Y.K Sun Y.Z.Sun Z.J.Sun Z.T.Sun Y.T Tan C.J.Tang G.Y.Tang X.Tang V.Thoren B.Tsednee I.Uman B.Wang B.L.Wang C.W.Wang D.Y.Wang H.H.Wang K.Wang L.L.Wang L.S.Wang M.Wang M.Z.Wang Wang Meng P.L.Wang R.M.Wang W.P.Wang X.Wang X.F.Wang X.L.Wang Y.Wang Y.F.Wang Z.Wang Z.G.Wang Z.Y.Wang Zongyuan Wang T.Weber D.H.Wei P.Weidenkaff H.W.Wen S.P.Wen U.Wiedner G.Wilkinson M.Wolke L.H.Wu L.J.Wu Z.Wu L.Xia Y.Xia S.Y.Xiao Y.J.Xiao Z.J.Xiao Y.G.Xie Y.H.Xie T.Y.Xing X.A.Xiong Q.L.Xiu G.F.Xu L.Xu Q.J.Xu W.Xu X.P.Xu F.Yan L.Yan W.B.Yan W.C.Yan Y.H.Yan H.J.Yang H.X.Yang L.Yang R.X.Yang S.L.Yang Y.H.Yang Y.X.Yang Yifan Yang Z.Q.Yang M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu J.S.Yu C.Z.Yuan X.Q.Yuan Y.Yuan A.Yuncu A.A.Zafar Y.Zeng B.X.Zhang B.Y.Zhang C.C.Zhang D.H.Zhang H.H.Zhang H.Y.Zhang J.Zhang J.L.Zhang J.Q.Zhang J.W.Zhang J.Y.Zhang J.Z.Zhang K.Zhang L.Zhang S.F.Zhang T.J.Zhang X.Y.Zhang Y.Zhang Y.H.Zhang Y.T.Zhang Yang Zhang Yao Zhang Yi Zhang Yu Zhang Z.H.Zhang Z.P.Zhang Z.Q.Zhang Z.Y.Zhang G.Zhao J.W.Zhao J.Y.Zhao J.Z.Zhao Lei Zhao Ling Zhao M.G.Zhao Q.Zhao S.J.Zhao T.C.Zhao Y.B.Zhao Z.G.Zhao A.Zhemchugov B.Zheng J.P.Zheng Y.Zheng Y.H.Zheng B.Zhong L.Zhou L.P.Zhou Q.Zhou X.Zhou X.K.Zhou Xingyu Zhou Xiaoyu Zhou Xu Zhou A.N.Zhu J.Zhu J.Zhu K.Zhu K.J.Zhu S.H.Zhu W.J.Zhu X.L.Zhu Y.C.Zhu Y.S.Zhu Z.A.Zhu J.Zhuang B.S.Zou J.H.Zou 《Chinese Physics C》 SCIE CAS CSCD 2020年第4期I0001-I0004,1-102,共106页
There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B fac... There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESⅢ, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESⅢ during the remaining operation period of BEPCⅡ. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCⅡ to higher luminosity. 展开更多
关键词 MESON HADRON optimization
原文传递
Study of BESIII trigger efficiencies with the 2018 J/ψ data 被引量:36
20
作者 M.Ablikim M.N.Achasov +501 位作者 P.Adlarson S.Ahmed M.Albrecht R.Aliberti A.Amoroso M.R.An Q.An X.H.Bai Y.Bai O.Bakina R.Baldini Ferroli I.Balossino Y.Ban K.Begzsuren N.Berger M.Bertani D.Bettoni F.Bianchi J.Bloms A.Bortone I.Boyko R.A.Briere H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.F.Chang W.L.Chang G.Chelkov D.Y.Chen g.chen H.S.Chen M.L.Chen S.J.Chen X.R.Chen Y.B.Chen Z.J Chen W.S.Cheng G.Cibinetto F.Cossio X.F.Cui H.L.Dai X.C.Dai A.Dbeyssi R.E.de Boer D.Dedovich Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori Y.Ding C.Dong J.Dong L.Y.Dong M.Y.Dong X.Dong S.X.Du Y.L.Fan J.Fang S.S.Fang Y.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng M.Fritsch C.D.Fu Y.Gao Y.Gao Y.Gao Y.G.Gao I.Garzia P.T.Ge C.Geng E.M.Gersabeck A Gilman K.Goetzen L.Gong W.X.Gong W.Gradl M.Greco L.M.Gu M.H.Gu S.Gu Y.T.Gu C.Y Guan A.Q.Guo L.B.Guo R.P.Guo Y.P.Guo A.Guskov T.T.Han W.Y.Han X.Q.Hao F.A.Harris H Hüsken K.L.He F.H.Heinsius C.H.Heinz T.Held Y.K.Heng C.Herold M.Himmelreich T.Holtmann Y.R.Hou Z.L.Hou H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang L.Q.Huang X.T.Huang Y.P.Huang Z.Huang T.Hussain W.Ikegami Andersson W.Imoehl M.Irshad S.Jaeger S.Janchiv Q.Ji Q.P.Ji X.B.Ji X.L.Ji H.B.Jiang X.S.Jiang J.B.Jiao Z.Jiao S.Jin Y.Jin T.Johansson N.Kalantar-Nayestanaki X.S.Kang R.Kappert M.Kavatsyuk B.C.Ke I.K.Keshk A.Khoukaz P.Kiese R.Kiuchi R.Kliemt L.Koch O.B.Kolcu B.Kopf M.Kuemmel M.Kuessner A.Kupsc M.G.Kurth W.Kühn J.J.Lane J.S.Lange P.Larin A.Lavania L.Lavezzi Z.H.Lei H.Leithoff M.Lellmann T.Lenz C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.Li H.Li H.B.Li H.J.Li J.L.Li J.Q.Li J.S.Li Ke Li L.K.Li Lei Li P.R.Li S.Y.Li W.D.Li W.G.Li X.H.Li X.L.Li Z.Y.Li H.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang L.Z.Liao J.Libby C.X.Lin B.J.Liu C.X.Liu D.Liu F.H.Liu Fang Liu Feng Liu H.B.Liu H.M.Liu Huanhuan Liu Huihui Liu J.B.Liu J.L.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu L.Liu M.H.Liu P.L.Liu Q.Liu Q.Liu S.B.Liu Shuai Liu T.Liu W.M.Liu X.Liu Y.Liu Y.B.Liu Z.A.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.D.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu C.L.Luo M.X.Luo b P.W.Luo T.Luo X.L.Luo S.Lusso X.R.Lyu F.C.Ma H.L.Ma L.L.Ma M.M.Ma Q.M.Ma R.Q.Ma R.T.Ma X.X.Ma X.Y.Ma F.E.Maas M.Maggiora S.Maldaner S.Malde Q.A.Malik A.Mangoni Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri T.J.Min R.E.Mitchell X.H.Mo Y.J.Mo N.Yu.Muchnoi H.Muramatsu S.Nakhoul Y.Nefedov F.Nerling I.B.Nikolaev Z.Ning S.Nisar S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak P.Patteri M.Pelizaeus H.P.Peng K.Peters J.Pettersson J.L.Ping R.G.Ping R.Poling V.Prasad H.Qi H.R.Qi K.H.Qi M.Qi T.Y.Qi T.Y.Qi S.Qian W.-B.Qian Z.Qian C.F.Qiao L.Q.Qin X.S.Qin Z.H.Qin J.F.Qiu S.Q.Qu K.H.Rashid K.Ravindran C.F.Redmer A.Rivetti V.Rodin M.Rolo G.Rong Ch.Rosner M.Rump H.S.Sang A.Sarantsev Y.Schelhaas C.Schnier K.Schoenning M.Scodeggio D.C.Shan W.Shan X.Y.Shan J.F.Shangguan M.Shao C.P.Shen P.X.Shen X.Y.Shen H.C.Shi R.S.Shi X.Shi X.D Shi W.M.Song Y.X.Song S.Sosio S.Spataro K.X.Su P.P.Su F.F.Sui G.X.Sun H.K.Sun J.F.Sun L.Sun S.S.Sun T.Sun W.Y.Sun X Sun Y.J.Sun Y.K.Sun Y.Z.Sun Z.T.Sun Y.H.Tan Y.X.Tan C.J.Tang G.Y.Tang J.Tang J.X.Teng V.Thoren I.Uman B.Wang C.W.Wang D.Y.Wang H.J.Wang H.P.Wang K.Wang L.L.Wang M.Wang M.Z.Wang Meng Wang W.Wang W.H.Wang W.P.Wang X.Wang X.F.Wang X.L.Wang Y.Wang Y.D.Wang Y.F.Wang Y.Q.Wang Y.Y.Wang Z.Wang Z.Y.Wang Ziyi Wang Zongyuan Wang D.H.Wei P.Weidenkaff F.Weidner S.P.Wen D.J.White U.Wiedner G.Wilkinson M.Wolke L.Wollenberg J.F.Wu L.H.Wu L.J.Wu X.Wu Z.Wu L.Xia H.Xiao S.Y.Xiao Z.J.Xiao X.H.Xie Y.G.Xie Y.H.Xie T.Y.Xing G.F.Xu Q.J.Xu W.Xu X.P.Xu F.Yan L.Yan W.B.Yan W.C.Yan Xu Yan H.J.Yang H.X.Yang L.Yang S.L.Yang Y.X.Yang Yifan Yang Zhi Yang M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu T.Yu C.Z.Yuan L.Yuan X.Q.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.Yuncu A.A.Zafar Y.Zeng B.X.Zhang Guangyi Zhang H.Zhang H.H.Zhang H.Y.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.W.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang Jiawei Zhang L.Q.Zhang Lei Zhang S.Zhang S.F.Zhang Shulei Zhang X.D.Zhang X.Y.Zhang Y.Zhang Y.H.Zhang Y.T.Zhang Yan Zhang Yao Zhang Yi Zhang Z.H.Zhang Z.Y.Zhang G.Zhao J.Zhao J.Y.Zhao J.Z.Zhao Lei Zhao Ling Zhao M.G.Zhao Q.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng J.P.Zheng Y.Zheng Y.H.Zheng B.Zhong C.Zhong L.P.Zhou Q.Zhou X.Zhou X.K.Zhou X.R.Zhou A.N.Zhu J.Zhu K.Zhu K.J.Zhu S.H.Zhu T.J.Zhu W.J.Zhu W.J.Zhu Y.C.Zhu Z.A.Zhu B.S.Zou J.H.Zou 《Chinese Physics C》 SCIE CAS CSCD 2021年第2期48-55,共8页
Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,na... Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,namely Bhabha scattering,dimuon production and generic hadronic events with charged particles.The combined efficiency of all active triggers approaches 100%in most cases,with uncertainties small enough not to affect most physics analyses. 展开更多
关键词 BESIII trigger efficiency Bhabha dimuon hadronic events
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部