期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Automatic diagnosis of agromyzid leafminer damage levels using leaf images captured by AR glasses
1
作者 Zhongru ye Yongjian Liu +10 位作者 fuyu ye Hang Li Ju Luo Jianyang Guo Zelin Feng Chen Hong Lingyi Li Shuhua Liu Baojun Yang Wanxue Liu Qing Yao 《Journal of Integrative Agriculture》 2025年第9期3559-3573,共15页
Agromyzid leafminers cause significant economic losses in both vegetable and horticultural crops,and precise assessments of pesticide needs must be based on the extent of leaf damage.Traditionally,surveyors estimate t... Agromyzid leafminers cause significant economic losses in both vegetable and horticultural crops,and precise assessments of pesticide needs must be based on the extent of leaf damage.Traditionally,surveyors estimate the damage by visually comparing the proportion of damaged to intact leaf area,a method that lacks objectivity,precision,and reliable data traceability.To address these issues,an advanced survey system that combines augmented reality(AR)glasses with a camera and an artificial intelligence(AI)algorithm was developed in this study to objectively and accurately assess leafminer damage in the feld.By wearing AR glasses equipped with a voice-controlled camera,surveyors can easily flatten damaged leaves by hand and capture images for analysis.This method can provide a precise and reliable diagnosis of leafminer damage levels,which in turn supports the implementation of scientifically grounded and targeted pest management strategies.To calculate the leafminer damage level,the DeepLab-Leafminer model was proposed to precisely segment the leafminer-damaged regions and the intact leaf region.The integration of an edge-aware module and a Canny loss function into the DeepLabv3+model enhanced the DeepLab-Leafminer model's capability to accurately segment the edges of leafminer-damaged regions,which often exhibit irregular shapes.Compared with state-of-the-art segmentation models,the DeepLabLeafminer model achieved superior segmentation performance with an Intersection over Union(IoU)of 81.23%and an F1score of 87.92%on leafminer-damaged leaves.The test results revealed a 92.38%diagnosis accuracy of leafminer damage levels based on the DeepLab-Leafminer model.A mobile application and a web platform were developed to assist surveyors in displaying the diagnostic results of leafminer damage levels.This system provides surveyors with an advanced,user-friendly,and accurate tool for assessing agromyzid leafminer damage in agricultural felds using wearable AR glasses and an AI model.This method can also be utilized to automatically diagnose pest and disease damage levels in other crops based on leaf images. 展开更多
关键词 agromyzid leafminer plant leaf image damage level AR glasses DeepLabv3+model image segmentation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部