While TiFe alloy has recently attracted attention as the efficient catalyst to enhance de/hydrogenation rates of Mg/MgH_(2),the difficulty of its activation characteristics has hindered further improvement of reaction...While TiFe alloy has recently attracted attention as the efficient catalyst to enhance de/hydrogenation rates of Mg/MgH_(2),the difficulty of its activation characteristics has hindered further improvement of reaction kinetics.Herein,we report that the TiFe_(0.92)Mn_(0.04)Co_(0.04) catalyst can overcome the abovementioned challenges.The synthesized MgH_(2)-30 wt% TiFe_(0.92)Mn_(0.04)Co_(0.04) can release 4.5 wt%of hydrogen in 16 min at 250℃,three times as fast as MgH_(2).The activation energy of dehydrogenation was as low as 84.6 kJ mol^(-1),which is 46.8%reduced from pure MgH_(2).No clear degradation of reaction rates and hydrogen storage capacity was observed for at least 30 cycles.Structural studies reveal that TiFe_(0.92)Mn_(0.04)Co_(0.04) partially decomposes to in-situ generatedα-Fe particles dispersed on TiFe_(0.92)Mn_(0.04)Co_(0.04).The presence ofα-Fe reduces the formation of an oxide layer on TiFe_(0.92)Mn_(0.04)Co_(0.04),enabling the activation processes.At the same time,the hydrogen incorporation capabilities of TiFe_(0.92)Mn_(0.04)Co_(0.04) can provide more hydrogen diffusion paths,which promote hydrogen dissociation and diffusion.These discoveries demonstrate the advanced nature and importance of combining the in-situ generatedα-Fe with TiFe_(0.92)Mn_(0.04)Co_(0.04).It provides a new strategy for designing highly efficient and stable catalysts for Mg-based hydrogen storage materials.展开更多
Since the introduction of Tesla's Giga-Casting process, the automotive industry has widely accepted the concept of super-sized structural components due to their significant potential for enhancing the light-weigh...Since the introduction of Tesla's Giga-Casting process, the automotive industry has widely accepted the concept of super-sized structural components due to their significant potential for enhancing the light-weighting of both electric and internal combustion engine vehicles.These super-sized components can be further lightened by using Mg alloys because of their exceptional lightweight characteristics, with a density only two-thirds that of aluminium alloys and one-fourth that of steel. This outstanding attribute offers the attractive prospect of achieving significant weight reduction without compromising structural integrity. This review examines studies on the Mg-alloy HighPressure Die Casting(HPDC) process, providing insights into the future prospects of incorporating Mg alloys into super-sized automotive HPDC components.展开更多
基金supported by The National Key Research and Development Program of China(2023YFB3809100)the National Natural Science Foundation of China(U23A200722)the Fundamental Research Funds for the Central Universities(2023CDJXY-016).
文摘While TiFe alloy has recently attracted attention as the efficient catalyst to enhance de/hydrogenation rates of Mg/MgH_(2),the difficulty of its activation characteristics has hindered further improvement of reaction kinetics.Herein,we report that the TiFe_(0.92)Mn_(0.04)Co_(0.04) catalyst can overcome the abovementioned challenges.The synthesized MgH_(2)-30 wt% TiFe_(0.92)Mn_(0.04)Co_(0.04) can release 4.5 wt%of hydrogen in 16 min at 250℃,three times as fast as MgH_(2).The activation energy of dehydrogenation was as low as 84.6 kJ mol^(-1),which is 46.8%reduced from pure MgH_(2).No clear degradation of reaction rates and hydrogen storage capacity was observed for at least 30 cycles.Structural studies reveal that TiFe_(0.92)Mn_(0.04)Co_(0.04) partially decomposes to in-situ generatedα-Fe particles dispersed on TiFe_(0.92)Mn_(0.04)Co_(0.04).The presence ofα-Fe reduces the formation of an oxide layer on TiFe_(0.92)Mn_(0.04)Co_(0.04),enabling the activation processes.At the same time,the hydrogen incorporation capabilities of TiFe_(0.92)Mn_(0.04)Co_(0.04) can provide more hydrogen diffusion paths,which promote hydrogen dissociation and diffusion.These discoveries demonstrate the advanced nature and importance of combining the in-situ generatedα-Fe with TiFe_(0.92)Mn_(0.04)Co_(0.04).It provides a new strategy for designing highly efficient and stable catalysts for Mg-based hydrogen storage materials.
基金the funding from the National Key R&D Program of China (No.2022YFB3709300 and No.2021YFB3701000)National Natural Science Foundation of China (No.U21A2048,No.52271090,and No.52101125)。
文摘Since the introduction of Tesla's Giga-Casting process, the automotive industry has widely accepted the concept of super-sized structural components due to their significant potential for enhancing the light-weighting of both electric and internal combustion engine vehicles.These super-sized components can be further lightened by using Mg alloys because of their exceptional lightweight characteristics, with a density only two-thirds that of aluminium alloys and one-fourth that of steel. This outstanding attribute offers the attractive prospect of achieving significant weight reduction without compromising structural integrity. This review examines studies on the Mg-alloy HighPressure Die Casting(HPDC) process, providing insights into the future prospects of incorporating Mg alloys into super-sized automotive HPDC components.