期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Stable cycling of practical high-voltage LiCoO_(2)pouch cell via electrolyte modification 被引量:4
1
作者 Chao Tang Yawei Chen +11 位作者 Zhengfeng Zhang Wenqiang Li Junhua Jian Yulin Jie Fanyang Huang Yehu Han Wanxia Li fuping ai Ruiguo Cao Pengfei Yan Yuhao Lu Shuhong Jiao 《Nano Research》 SCIE EI CSCD 2023年第3期3864-3871,共8页
Nitriles as efficient electrolyte additives are widely used in high-voltage lithium-ion batteries.However,their working mechanisms are still mysterious,especially in practical high-voltage LiCoO_(2)pouch lithium-ion b... Nitriles as efficient electrolyte additives are widely used in high-voltage lithium-ion batteries.However,their working mechanisms are still mysterious,especially in practical high-voltage LiCoO_(2)pouch lithium-ion batteries.Herein,we adopt a tridentate ligandcontaining 1,3,6-hexanetricarbonitrile(HTCN)as an effective electrolyte additive to shed light on the mechanism of stabilizing high-voltage LiCoO_(2)cathode(4.5 V)through nitriles.The LiCoO_(2)/graphite pouch cells with the HTCN additive electrolyte possess superior cycling performance,90%retention of the initial capacity after 800 cycles at 25℃,and 72%retention after 500 cycles at 45℃,which is feasible for practical application.Such an excellent cycling performance can be attributed to the stable interface:The HTCN molecules with strong electron-donating ability participate in the construction of cathode-electrolyte interphase(CEI)through coordinating with Co ions,which suppresses the decomposition of electrolyte and improves the structural stability of LiCoO_(2)during cycling.In summary,the work recognizes a coordinating-based interphase-forming mechanism as an effective strategy to optimize the performance of high voltage LiCoO_(2)cathode with appropriate electrolyte additives for practical pouch batteries. 展开更多
关键词 LiCoO_(2) high voltage nitrile additive interface adsorption pouch cell electrolyte modification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部