期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
柴达木盆地南缘死亡蛛丝蓬(Halogeton arachnoideus)风影沙丘形态和沉积特征 被引量:1
1
作者 许瑞聪 董治宝 +3 位作者 南维鸽 陈国祥 杨馥宁 孔玲玲 《中国沙漠》 CSCD 北大核心 2023年第4期55-63,共9页
蛛丝蓬(Halogeton arachnoideus)死亡后仍能保持直立且发挥固沙效应。在野外实地考察和粒度实验的基础上运用相关统计方法,分析了柴达木盆地南缘地区死亡蛛丝蓬风影沙丘的形态和沉积特征。结果表明:(1)风影沙丘各参数之间相关性显著(P&l... 蛛丝蓬(Halogeton arachnoideus)死亡后仍能保持直立且发挥固沙效应。在野外实地考察和粒度实验的基础上运用相关统计方法,分析了柴达木盆地南缘地区死亡蛛丝蓬风影沙丘的形态和沉积特征。结果表明:(1)风影沙丘各参数之间相关性显著(P<0.01),其中沙丘垂向与水平尺度相关性较好,沙丘长度与宽度的拟合关系(R2=0.6)好于其他参数。(2)死亡蛛丝蓬与风影沙丘各形态参数之间呈显著正相关(0.8≥r>0.5,P<0.01,疏通度除外),蛛丝蓬长度和宽度对沙丘长度延伸的贡献度在逐渐降低,而高度的贡献度不断增大。(3)蛛丝蓬的冠幅面积、长度、疏通度与风影沙丘体积呈显著相关(P<0.01),其中冠幅面积与体积拟合关系较好(R2=0.8),它们共同作用了蛛丝蓬对沙子的截留能力。(4)蛛丝蓬风影沙丘沉积物主要粒级为极细沙和细沙,在植株的影响下风力逐渐减小,沿风向沉积物粒径逐渐变粗。 展开更多
关键词 风影沙丘 蛛丝蓬(Halogeton arachnoideus) 形态特征 粒度特征 柴达木盆地
原文传递
UAV Frequency-based Crowdsensing Using Grouping Multi-agent Deep Reinforcement Learning
2
作者 Cui ZHANG En WANG +2 位作者 funing yang Yong jian yang Nan JIANG 《计算机科学》 CSCD 北大核心 2023年第2期57-68,共12页
Mobile CrowdSensing(MCS)is a promising sensing paradigm that recruits users to cooperatively perform sensing tasks.Recently,unmanned aerial vehicles(UAVs)as the powerful sensing devices are used to replace user partic... Mobile CrowdSensing(MCS)is a promising sensing paradigm that recruits users to cooperatively perform sensing tasks.Recently,unmanned aerial vehicles(UAVs)as the powerful sensing devices are used to replace user participation and carry out some special tasks,such as epidemic monitoring and earthquakes rescue.In this paper,we focus on scheduling UAVs to sense the task Point-of-Interests(PoIs)with different frequency coverage requirements.To accomplish the sensing task,the scheduling strategy needs to consider the coverage requirement,geographic fairness and energy charging simultaneously.We consider the complex interaction among UAVs and propose a grouping multi-agent deep reinforcement learning approach(G-MADDPG)to schedule UAVs distributively.G-MADDPG groups all UAVs into some teams by a distance-based clustering algorithm(DCA),then it regards each team as an agent.In this way,G-MADDPG solves the problem that the training time of traditional MADDPG is too long to converge when the number of UAVs is large,and the trade-off between training time and result accuracy could be controlled flexibly by adjusting the number of teams.Extensive simulation results show that our scheduling strategy has better performance compared with three baselines and is flexible in balancing training time and result accuracy. 展开更多
关键词 UAV Crowdsensing Frequency coverage Grouping multi-agent deep reinforcement learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部