This study focuses on High-Amplitude Wall Heat Flux events(HAWHFs) occurring during the interaction between a supersonic flat-plate Turbulent Boundary Layer(TBL) at a Mach number of2.25 and an oblique shock wave impin...This study focuses on High-Amplitude Wall Heat Flux events(HAWHFs) occurring during the interaction between a supersonic flat-plate Turbulent Boundary Layer(TBL) at a Mach number of2.25 and an oblique shock wave impinging at 33.2.. A database from a validated direct numerical simulation is analyzed using conditional averaging and a two-dimensional clustering methodology to elucidate the statistical characteristics of both positive and negative HAWHFs within the interaction region. The results reveal that the interaction considerably affects the temporal attributes of the HAWHFs, leading to an extended lifespan for the positive HAWHFs and an increased interval between the occurrences of negative HAWHFs. The structural characteristics of the identified HAWHFs are delineated based on the evolution of population density, aspect ratio, and both absolute and relative distances throughout the interaction. The joint probability density functions of the relative positioning of two adjacent structures indicate that, away from the reattachment point, the positive HAWHFs align in the spanwise direction, displaying similarities with the negative HAWHFs. Moreover, a conditional analysis of flow structures associated with HAWHFs is conducted. This analysis of the conditionally averaged three-dimensional fields reveals that the interaction fosters larger-scale organizational patterns in the downstream region. However, the formation of positive and negative HAWHFs remains largely unaffected by the interaction, with the former predominantly linked to a two-layer temperature structure and the latter primarily associated with a pair of oblique vortices.展开更多
The interaction of an impinging oblique shock wave with an angle of 30°and a supersonic turbulent boundary layer at Ma_(∞)=2.9 and Re_(θ)=2400 over a wavy-wall is investigated through direct numerical simulatio...The interaction of an impinging oblique shock wave with an angle of 30°and a supersonic turbulent boundary layer at Ma_(∞)=2.9 and Re_(θ)=2400 over a wavy-wall is investigated through direct numerical simulation and compared with the interaction on a flat-plate under the same flow conditions.A sinusoidal wave with amplitude to wavelength ratio of 0.26 moves in the streamwise direction and is uniformly distributed across the spanwise direction.The influences of the wavy-wall on the interaction,including the characterization of the flow field,the skin-friction,pressure and the budget of turbulence kinetic energy,are systematically studied.The region of separation grows slightly and decomposes into four bubbles.Local peaks of skin-friction are observed at the rear part of the interaction region.The low-frequency shock motion can be seen in the wall pressure spectra.Analyses of the turbulence kinetic energy budget indicate that both diffusion and transport significantly increase near the crests,balanced by an amplified dissipation in the near-wall region.Proper orthogonal decomposition analyses show that the most energetic structures are associated with the separated shock and the shear layer over the bubbles.Only the bubbles in the first two troughs are dominated by a low-frequency enlargement or shrinkage.展开更多
The performance of an optimized aerodynamic shape is further improved by a second-step optimization using the design knowledge discovered by a data mining technique based on Proper Orthogonal Decomposition(POD) in the...The performance of an optimized aerodynamic shape is further improved by a second-step optimization using the design knowledge discovered by a data mining technique based on Proper Orthogonal Decomposition(POD) in the present study. Data generated in the first-step optimization by using evolution algorithms is saved as the source data, among which the superior data with improved objectives and maintained constraints is chosen. Only the geometry components of the superior data are picked out and used for constructing the snapshots of POD. Geometry characteristics of the superior data illustrated by POD bases are the design knowledge, by which the second-step optimization can be rapidly achieved. The optimization methods are demonstrated by redesigning a transonic compressor rotor blade, NASA Rotor 37, in the study to maximize the peak adiabatic efficiency, while maintaining the total pressure ratio and mass flow rate.Firstly, the blade is redesigned by using a particle swarm optimization method, and the adiabatic efficiency is increased by 1.29%. Then, the second-step optimization is performed by using the design knowledge, and a 0.25% gain on the adiabatic efficiency is obtained. The results are presented and addressed in detail, demonstrating that geometry variations significantly change the pattern and strength of the shock wave in the blade passage. The former reduces the separation loss,while the latter reduces the shock loss, and both favor an increase of the adiabatic efficiency.展开更多
The reattached boundary layer in the interaction of an oblique shock wave with a flatplate turbulent boundary layer at Mach number 2.25 is studied by means of Direct Numerical Simulation(DNS).The numerical results are...The reattached boundary layer in the interaction of an oblique shock wave with a flatplate turbulent boundary layer at Mach number 2.25 is studied by means of Direct Numerical Simulation(DNS).The numerical results are carefully compared with available experimental and DNS data in terms of turbulence statistics,wall pressure and skin friction.The coherent vortex structures are significantly enhanced due to the shock interaction,and the reattached boundary layer is characterized by large-scale structures in the outer region.The space-time correlation of fluctuating wall shear stress and streamwise velocity fluctuation reveals that the structural inclination angle exhibits a gradual decrease during the recovery process.The scale interactions are analyzed by using a twopoint amplitude modulation correlation.A possible mechanism is proposed to account for the strong amplitude modulation in the downstream region.Moreover,the mean skin-friction is decomposed to understand the physically informed contributions.Unlike the upstream Turbulent Boundary Layer(TBL),the contribution associated with the Turbulence Kinetic Energy(TKE)production is greatly amplified,while the spatial growth contribution induced by the pressure gradient largely inhibits skin-friction generation.Based on bidimensional empirical mode decomposition,the turbulence kinetic energy production contribution is further split into different terms with specific spanwise length scales.展开更多
The evolution characteristics of the mean skin friction beneath the supersonic turbulent boundary layer that interacts with incident shock waves at Mach 2.25 are analyzed using Direct Numerical Simulation(DNS). The se...The evolution characteristics of the mean skin friction beneath the supersonic turbulent boundary layer that interacts with incident shock waves at Mach 2.25 are analyzed using Direct Numerical Simulation(DNS). The separated and attached boundary layers in the interaction region that respectively correspond to 33.2° and 28° incident shock angles are considered. The mean skin friction recovery rate for the separated boundary layer is much gentler and distinctly less than that for the attached case where the skin friction completes its recovery within one boundary layer thickness. The novel mean skin friction decomposition method for compressible flows proposed by the recent research is applied in the interaction region to investigate the internal evolution characteristics quantitatively. The results reveal that the three decomposition components are distinctly unequal between the two cases. The contributions of the turbulent motions at different scales to the associated term are focused on using empirical mode decomposition technology. It indicates that the outer large-scale structures dominate separation and reattachment regions, while contributions from inner small-scale structures are limited. In contrast, contributions from the outer largescale structures are dramatically reduced in the attached case, which results in the outer large-scale and inner small-scale motions being of equal importance.展开更多
A direct numerical simulation of hypersonic Shock wave and Turbulent Boundary Layer Interaction(STBLI)at Mach 6.0 on a sharp 7.half-angle circular cone/flare configuration at zero angle of attack is performed.The flar...A direct numerical simulation of hypersonic Shock wave and Turbulent Boundary Layer Interaction(STBLI)at Mach 6.0 on a sharp 7.half-angle circular cone/flare configuration at zero angle of attack is performed.The flare angle is 34.and the momentum thickness Reynolds number based on the incoming turbulent boundary layer on the sharp circular cone is Re θ=2506.It is found that the mean flow is separated and the separation bubble occurring near the corner exhibits unsteadiness.The Reynolds analogy factor changes dramatically across the interaction,and varies between 1.06 and 1.27 in the downstream region,while the QP85 scaling factor has a nearly constant value of 0.5 across the interaction.The evolution of the reattached boundary layer is characterized in terms of the mean profiles,the Reynolds stress components,the anisotropy tensor and the turbulence kinetic energy.It is argued that the recovery is incomplete and the near-wall asymptotic behavior does not occur for the hypersonic interaction.In addition,mean skin friction decomposition in an axisymmetric turbulent boundary layer is carried out for the first time.Downstream of the interaction,the contributions of transverse curvature and body divergence are negligible,whereas the positive contribution associated with the turbulence kinetic energy production and the negative spatial-growth contribution are dominant.Based on scale decomposition,the positive contribution is further divided into terms with different spanwise length scales.The negative contribution is analyzed by comparing the convective term,the streamwise-heterogeneity term and the pressure gradient term.展开更多
This study investigates high-amplitude Extreme Wall Pressure fluctuation Events(EWPEs)in Shock wave/Turbulent Boundary Layer Interactions(STBLIs)through the conditional sampling of direct numerical simulation database...This study investigates high-amplitude Extreme Wall Pressure fluctuation Events(EWPEs)in Shock wave/Turbulent Boundary Layer Interactions(STBLIs)through the conditional sampling of direct numerical simulation databases.The aim is to evaluate the effect of STBLIs and their strength on the statistical properties and associated turbulent structures of EWPEs using the conditional-averaging and clustering method.The temporal statistical results show that the occurrence probability and contribution ratio of EWPEs decrease downstream of strong STBLI,but their duration and interval time increase.Regarding two-dimensional wall pressure structures,the large population of small-scale structures becomes more elongated,but strong interactions induce a greater number of large-scale structures.The pairing of wall pressure events with a higher occurrence probability is verified by the joint probability density functions.Conditional analysis reveals that,as the interaction strength increases,the ejection motion associated with positive events occurs farther downstream and the spanwise vortex core locating above negative events is lifted up along the wall-normal direction.Moreover,analysis associates the paired wall pressure events with the sweep,ejection,and swirl motions in STBLIs,where hairpin eddies play an important role in the formation of positive-negative paired wall pressure structures.展开更多
Direct numerical simulation(DNS)of transition over a hypersonic lifting body model HyTRV developed by China Aerodynamics Research and Development Center is performed.The free-stream parameters are:the free-stream Mach...Direct numerical simulation(DNS)of transition over a hypersonic lifting body model HyTRV developed by China Aerodynamics Research and Development Center is performed.The free-stream parameters are:the free-stream Mach number is 6,the unit Reynolds number is 10000/mm,the free-stream temperature is 79 K,the angle of attack is 0,and the wall temperature is 300 K.Weak random blowing-and-suction perturbations in the leading range are used to trigger the transition.A high order finite-difference code OpenCFD developed by the authors is used for the simulation,and grid convergence test shows that the transition locations are grid-convergence.DNS results show that transition occurs in central area of the lower surface and the concaved region of the upper surface,and the transition regions are also the streamline convergence regions.The transition mechanisms in different regions are investigated by using the spectrum and POD analysis.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12232018,12072360)The authors are very grateful to Dr.DONG Siwei for his helpful recommendation on the clustering method.
文摘This study focuses on High-Amplitude Wall Heat Flux events(HAWHFs) occurring during the interaction between a supersonic flat-plate Turbulent Boundary Layer(TBL) at a Mach number of2.25 and an oblique shock wave impinging at 33.2.. A database from a validated direct numerical simulation is analyzed using conditional averaging and a two-dimensional clustering methodology to elucidate the statistical characteristics of both positive and negative HAWHFs within the interaction region. The results reveal that the interaction considerably affects the temporal attributes of the HAWHFs, leading to an extended lifespan for the positive HAWHFs and an increased interval between the occurrences of negative HAWHFs. The structural characteristics of the identified HAWHFs are delineated based on the evolution of population density, aspect ratio, and both absolute and relative distances throughout the interaction. The joint probability density functions of the relative positioning of two adjacent structures indicate that, away from the reattachment point, the positive HAWHFs align in the spanwise direction, displaying similarities with the negative HAWHFs. Moreover, a conditional analysis of flow structures associated with HAWHFs is conducted. This analysis of the conditionally averaged three-dimensional fields reveals that the interaction fosters larger-scale organizational patterns in the downstream region. However, the formation of positive and negative HAWHFs remains largely unaffected by the interaction, with the former predominantly linked to a two-layer temperature structure and the latter primarily associated with a pair of oblique vortices.
基金co-supported by the National Key Research and Development Program of China(Nos.2019YFA0405300 and 2016YFA0401200)the National Natural Science Foundation of China(Nos.11972356 and 91852203)+1 种基金LHD Youth Innovation Fund(No.LHD2019CX04)National Numerical Wind Tunnel Project。
文摘The interaction of an impinging oblique shock wave with an angle of 30°and a supersonic turbulent boundary layer at Ma_(∞)=2.9 and Re_(θ)=2400 over a wavy-wall is investigated through direct numerical simulation and compared with the interaction on a flat-plate under the same flow conditions.A sinusoidal wave with amplitude to wavelength ratio of 0.26 moves in the streamwise direction and is uniformly distributed across the spanwise direction.The influences of the wavy-wall on the interaction,including the characterization of the flow field,the skin-friction,pressure and the budget of turbulence kinetic energy,are systematically studied.The region of separation grows slightly and decomposes into four bubbles.Local peaks of skin-friction are observed at the rear part of the interaction region.The low-frequency shock motion can be seen in the wall pressure spectra.Analyses of the turbulence kinetic energy budget indicate that both diffusion and transport significantly increase near the crests,balanced by an amplified dissipation in the near-wall region.Proper orthogonal decomposition analyses show that the most energetic structures are associated with the separated shock and the shear layer over the bubbles.Only the bubbles in the first two troughs are dominated by a low-frequency enlargement or shrinkage.
基金supported by the National Natural Science Foundation of China(Nos.51676003,51206003,and 11702305)
文摘The performance of an optimized aerodynamic shape is further improved by a second-step optimization using the design knowledge discovered by a data mining technique based on Proper Orthogonal Decomposition(POD) in the present study. Data generated in the first-step optimization by using evolution algorithms is saved as the source data, among which the superior data with improved objectives and maintained constraints is chosen. Only the geometry components of the superior data are picked out and used for constructing the snapshots of POD. Geometry characteristics of the superior data illustrated by POD bases are the design knowledge, by which the second-step optimization can be rapidly achieved. The optimization methods are demonstrated by redesigning a transonic compressor rotor blade, NASA Rotor 37, in the study to maximize the peak adiabatic efficiency, while maintaining the total pressure ratio and mass flow rate.Firstly, the blade is redesigned by using a particle swarm optimization method, and the adiabatic efficiency is increased by 1.29%. Then, the second-step optimization is performed by using the design knowledge, and a 0.25% gain on the adiabatic efficiency is obtained. The results are presented and addressed in detail, demonstrating that geometry variations significantly change the pattern and strength of the shock wave in the blade passage. The former reduces the separation loss,while the latter reduces the shock loss, and both favor an increase of the adiabatic efficiency.
基金co-supported by the National Key R&D Program of China (No. 2019YFA0405300)the National Natural Science Foundation of China (Nos. 11972356 and 91852203)
文摘The reattached boundary layer in the interaction of an oblique shock wave with a flatplate turbulent boundary layer at Mach number 2.25 is studied by means of Direct Numerical Simulation(DNS).The numerical results are carefully compared with available experimental and DNS data in terms of turbulence statistics,wall pressure and skin friction.The coherent vortex structures are significantly enhanced due to the shock interaction,and the reattached boundary layer is characterized by large-scale structures in the outer region.The space-time correlation of fluctuating wall shear stress and streamwise velocity fluctuation reveals that the structural inclination angle exhibits a gradual decrease during the recovery process.The scale interactions are analyzed by using a twopoint amplitude modulation correlation.A possible mechanism is proposed to account for the strong amplitude modulation in the downstream region.Moreover,the mean skin-friction is decomposed to understand the physically informed contributions.Unlike the upstream Turbulent Boundary Layer(TBL),the contribution associated with the Turbulence Kinetic Energy(TKE)production is greatly amplified,while the spatial growth contribution induced by the pressure gradient largely inhibits skin-friction generation.Based on bidimensional empirical mode decomposition,the turbulence kinetic energy production contribution is further split into different terms with specific spanwise length scales.
文摘The evolution characteristics of the mean skin friction beneath the supersonic turbulent boundary layer that interacts with incident shock waves at Mach 2.25 are analyzed using Direct Numerical Simulation(DNS). The separated and attached boundary layers in the interaction region that respectively correspond to 33.2° and 28° incident shock angles are considered. The mean skin friction recovery rate for the separated boundary layer is much gentler and distinctly less than that for the attached case where the skin friction completes its recovery within one boundary layer thickness. The novel mean skin friction decomposition method for compressible flows proposed by the recent research is applied in the interaction region to investigate the internal evolution characteristics quantitatively. The results reveal that the three decomposition components are distinctly unequal between the two cases. The contributions of the turbulent motions at different scales to the associated term are focused on using empirical mode decomposition technology. It indicates that the outer large-scale structures dominate separation and reattachment regions, while contributions from inner small-scale structures are limited. In contrast, contributions from the outer largescale structures are dramatically reduced in the attached case, which results in the outer large-scale and inner small-scale motions being of equal importance.
基金co-supported by the National Natural Science Foundation of China(Nos.11972356 and 91852203)the National Key Research and Development Program of China(No.2019YFA0405300)。
文摘A direct numerical simulation of hypersonic Shock wave and Turbulent Boundary Layer Interaction(STBLI)at Mach 6.0 on a sharp 7.half-angle circular cone/flare configuration at zero angle of attack is performed.The flare angle is 34.and the momentum thickness Reynolds number based on the incoming turbulent boundary layer on the sharp circular cone is Re θ=2506.It is found that the mean flow is separated and the separation bubble occurring near the corner exhibits unsteadiness.The Reynolds analogy factor changes dramatically across the interaction,and varies between 1.06 and 1.27 in the downstream region,while the QP85 scaling factor has a nearly constant value of 0.5 across the interaction.The evolution of the reattached boundary layer is characterized in terms of the mean profiles,the Reynolds stress components,the anisotropy tensor and the turbulence kinetic energy.It is argued that the recovery is incomplete and the near-wall asymptotic behavior does not occur for the hypersonic interaction.In addition,mean skin friction decomposition in an axisymmetric turbulent boundary layer is carried out for the first time.Downstream of the interaction,the contributions of transverse curvature and body divergence are negligible,whereas the positive contribution associated with the turbulence kinetic energy production and the negative spatial-growth contribution are dominant.Based on scale decomposition,the positive contribution is further divided into terms with different spanwise length scales.The negative contribution is analyzed by comparing the convective term,the streamwise-heterogeneity term and the pressure gradient term.
基金co-supported by the National Natural Science Foundation of China(Nos.12232018 and 11972356)the National Key Research and Development Program of China(No.2019YFA0405200)。
文摘This study investigates high-amplitude Extreme Wall Pressure fluctuation Events(EWPEs)in Shock wave/Turbulent Boundary Layer Interactions(STBLIs)through the conditional sampling of direct numerical simulation databases.The aim is to evaluate the effect of STBLIs and their strength on the statistical properties and associated turbulent structures of EWPEs using the conditional-averaging and clustering method.The temporal statistical results show that the occurrence probability and contribution ratio of EWPEs decrease downstream of strong STBLI,but their duration and interval time increase.Regarding two-dimensional wall pressure structures,the large population of small-scale structures becomes more elongated,but strong interactions induce a greater number of large-scale structures.The pairing of wall pressure events with a higher occurrence probability is verified by the joint probability density functions.Conditional analysis reveals that,as the interaction strength increases,the ejection motion associated with positive events occurs farther downstream and the spanwise vortex core locating above negative events is lifted up along the wall-normal direction.Moreover,analysis associates the paired wall pressure events with the sweep,ejection,and swirl motions in STBLIs,where hairpin eddies play an important role in the formation of positive-negative paired wall pressure structures.
基金supported by the National Numerical Windtunnel Projectthe National Key Research and Development Program of China(Grant Nos.2016YFA0401200,2020YFA0711800 and 2019YFA0405300)the National Natural Science Foundation of China(Grant No.91852203 and Grant No.12072349).
文摘Direct numerical simulation(DNS)of transition over a hypersonic lifting body model HyTRV developed by China Aerodynamics Research and Development Center is performed.The free-stream parameters are:the free-stream Mach number is 6,the unit Reynolds number is 10000/mm,the free-stream temperature is 79 K,the angle of attack is 0,and the wall temperature is 300 K.Weak random blowing-and-suction perturbations in the leading range are used to trigger the transition.A high order finite-difference code OpenCFD developed by the authors is used for the simulation,and grid convergence test shows that the transition locations are grid-convergence.DNS results show that transition occurs in central area of the lower surface and the concaved region of the upper surface,and the transition regions are also the streamline convergence regions.The transition mechanisms in different regions are investigated by using the spectrum and POD analysis.