期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The carboxylates formed on oxides promoting the aromatization in syngas conversion over composite catalysts 被引量:2
1
作者 Zhiyang Chen Youming Ni +3 位作者 fuli wen Ziqiao Zhou wenliang Zhu Zhongmin Liu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第5期835-843,共9页
Syngas to aromatics(STA)over bifunctional catalysts has attracted much attention in recent years,but the mechanism underlying the formation of aromatics remains controversial.The critical reaction intermediates,carbox... Syngas to aromatics(STA)over bifunctional catalysts has attracted much attention in recent years,but the mechanism underlying the formation of aromatics remains controversial.The critical reaction intermediates,carboxylates,were first identified and then confirmed to essentially promote aromatization in the syngas conversion over a ZnCrAlO_(x)&H-ZSM-5 composite catalyst.This study provides evidence that the carboxylates can be formed during the reactions of formate species and olefins.In addition,it is shown that the carboxylates favor the formation of aromatics over H-ZSM-5 even in the presence of H2.A novel mechanism for the formation of aromatics via the generation and transformation of carboxylate intermediates is proposed,and the transformation of carboxylates to aromatics via methyl-2-cyclopenten-1-one(MCPO)intermediates is indeed likely.A better understanding of the formation mechanism of aromatics would help optimize the composite catalyst. 展开更多
关键词 CARBOXYLATES Syngas-to-aromatics Composite catalysts ZnCrAlO_(x) H-ZSM-5
在线阅读 下载PDF
Polymer-encapsulated metal complex catalysts:An emerging and efficient platform for electrochemical CO_(2) reduction
2
作者 Yingshuo Liu Shuaishuai Lyu +2 位作者 fuli wen Weixuan Nie Shuqing Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第5期33-50,共18页
Over the past decade,electrocatalytic reduction of CO_(2)has gained substantial attention.However,hardly any of the previous reviews have focused on the systematic discussion of polymer-molecular catalyst composites a... Over the past decade,electrocatalytic reduction of CO_(2)has gained substantial attention.However,hardly any of the previous reviews have focused on the systematic discussion of polymer-molecular catalyst composites as an emerging system for the electrochemical transformation of CO_(2)to value-added products.In this review,we first give a brief overview of the general features of solid-state and molecular catalysts,and then advance the discussion to polymer-catalyst composite systems,with particular emphasis on polymer-encapsulated molecular catalysts,where the coordination environment surrounding molecular catalysts can be modified via polymer encapsulation to promote the overall performance of CO_(2)electrocatalysis.The elucidation of the possible reaction mechanisms of this emerging electrocat-alytic system along with proposed optimization strategies is also summarized and discussed based on recently published reports,followed by the challenges and prospects of their industrial applications at the end of this review.From this review,we hope the audience can gain a comprehensive understanding of the electrocatalytic mechanism of the coordinating polymers and valuable insights into engineering the microenvironment surrounding the metal complexes for potential future research directions. 展开更多
关键词 Polymer-molecular catalyst composite Polymer encapsulation Coordination environment CO_(2)electrocatalysis Electrocatalytic mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部