Phosphorus (P) is an essential nutrient element that is critical for plant growth and ecosystem functionality.The soil P cycle plays multiple roles,such as sustaining plant growth and productivity,regulating nutrient ...Phosphorus (P) is an essential nutrient element that is critical for plant growth and ecosystem functionality.The soil P cycle plays multiple roles,such as sustaining plant growth and productivity,regulating nutrient balance within ecosystems,and enhancing ecosystem adaptability and resilience.This cycle is influenced by factors such as the restoration approach and microbial community dynamics.However,the extent to which the restoration approach alters the P cycle in karst ecosystems and the underlying microbial mechanisms remain poorly understood.The P-cycle multifunctionality index (P-cycle MFI) serves as a comprehensive indicator for evaluating soil P cycle function,and it provides insights into changes in the P cycle between different restoration approaches.To investigate the shifts in soil P-cycle MFI and microbial mechanisms between different restoration approaches,we analyzed soil available P (AP),total P (TP),microbial biomass P (MBP),and the activities of acid phosphatase (ACP) and alkaline phosphatase (ALP).These data were used to calculate the P-cycle MFI by averaging the Z-scores between two restoration approaches(artificial restoration of forest (AF) and natural restoration of forest (NF)) and a control (cropland,CP) at six subtropical karst ecosystem sites in China.We also determined the soil organic carbon (SOC),exchangeable calcium (Ca) and magnesium (Mg),pH,bulk density (BD),microbial biomass C (MBC),and microbial biomass nitrogen (MBN),as well as the community structure,relative abundance,diversity indices,and co-occurrence networks of phoD-harboring bacteria.The results showed that the community structure of phoD-harboring bacteria varied significantly among AF,NF,and CP and across different temperature gradients.These bacteria exhibited increasing complexity and tightness in co-occurrence networks from CP to AF and then to NF,along with the ACP and ALP activities,but not the TP and AP contents.The P-cycle MFI values were significantly higher in NF compared to AF and CP,and the variation was significantly explained by restoration approach,temperature,MBC,MBN,SOC,exchangeable Ca,BD,community structure of phoD-harboring bacteria,and exchangeable Mg.Furthermore,natural restoration had a more substantial impact on the P-cycle MFI than temperature by enhancing SOC,microbial biomass,the complexity and co-occurrence network tightness of the phoD-harboring bacterial community structure,and ACP and ALP activities,but it reduced soil BD.The rare genera of phoD-harboring bacteria significantly influenced the variation of soil P-cycle MFI compared to the dominant genera.This study highlights the importance of rare genera of phoD-harboring bacteria in driving soil P-cycle multifunctionality in karst ecosystems,with natural restoration being more effective than artificial methods for enhancing soil organic matter and microbial community complexity.展开更多
基金supported by the National Key Research and Development Program of China (2022YFF1300705)the Key Research and Development Project of Guangxi,China (Guike AB24010051)+1 种基金the National Natural Science Foundation of China (42261011,32271730 and U20A2011)the Central Public Welfare Research Institutes,Chinese Academy of Geological Sciences (2023020)。
文摘Phosphorus (P) is an essential nutrient element that is critical for plant growth and ecosystem functionality.The soil P cycle plays multiple roles,such as sustaining plant growth and productivity,regulating nutrient balance within ecosystems,and enhancing ecosystem adaptability and resilience.This cycle is influenced by factors such as the restoration approach and microbial community dynamics.However,the extent to which the restoration approach alters the P cycle in karst ecosystems and the underlying microbial mechanisms remain poorly understood.The P-cycle multifunctionality index (P-cycle MFI) serves as a comprehensive indicator for evaluating soil P cycle function,and it provides insights into changes in the P cycle between different restoration approaches.To investigate the shifts in soil P-cycle MFI and microbial mechanisms between different restoration approaches,we analyzed soil available P (AP),total P (TP),microbial biomass P (MBP),and the activities of acid phosphatase (ACP) and alkaline phosphatase (ALP).These data were used to calculate the P-cycle MFI by averaging the Z-scores between two restoration approaches(artificial restoration of forest (AF) and natural restoration of forest (NF)) and a control (cropland,CP) at six subtropical karst ecosystem sites in China.We also determined the soil organic carbon (SOC),exchangeable calcium (Ca) and magnesium (Mg),pH,bulk density (BD),microbial biomass C (MBC),and microbial biomass nitrogen (MBN),as well as the community structure,relative abundance,diversity indices,and co-occurrence networks of phoD-harboring bacteria.The results showed that the community structure of phoD-harboring bacteria varied significantly among AF,NF,and CP and across different temperature gradients.These bacteria exhibited increasing complexity and tightness in co-occurrence networks from CP to AF and then to NF,along with the ACP and ALP activities,but not the TP and AP contents.The P-cycle MFI values were significantly higher in NF compared to AF and CP,and the variation was significantly explained by restoration approach,temperature,MBC,MBN,SOC,exchangeable Ca,BD,community structure of phoD-harboring bacteria,and exchangeable Mg.Furthermore,natural restoration had a more substantial impact on the P-cycle MFI than temperature by enhancing SOC,microbial biomass,the complexity and co-occurrence network tightness of the phoD-harboring bacterial community structure,and ACP and ALP activities,but it reduced soil BD.The rare genera of phoD-harboring bacteria significantly influenced the variation of soil P-cycle MFI compared to the dominant genera.This study highlights the importance of rare genera of phoD-harboring bacteria in driving soil P-cycle multifunctionality in karst ecosystems,with natural restoration being more effective than artificial methods for enhancing soil organic matter and microbial community complexity.