A sintered Nd-Y-Fe-B magnet was designed and manufactured by the multi-main-phase process.Unevenly distributed Y in the magnet decreases the adverse magnetic weakening effect of Y on the coercivity.Grain boundary diff...A sintered Nd-Y-Fe-B magnet was designed and manufactured by the multi-main-phase process.Unevenly distributed Y in the magnet decreases the adverse magnetic weakening effect of Y on the coercivity.Grain boundary diffusion process(GBDP)was conducted to further enhance the coercivity of the Nd-Y-Fe-B magnet.The coercivity increases significantly from 884 to 1741 kA/m after GBDP with Pr_(60)Tb_(10)Cu_(30)alloy.The mechanism of the coercivity enhancement is discussed based on the microstructure analysis.Micromagnetic simulation reveals that when the diffused Tb-rich shell thickness is lower than 12 nm the c-plane shell(perpendicular to the c-axis)is much more effective in enhancing the coercivity than the side plane shell(parallel to the c-axis).But when the Tb-rich shell thickness is above12 nm the side plane shell contributes more to the coercivity enhancement.The results in this work can help to design and manufacture Nd-Fe-B magnets with low cost and high magnetic properties.展开更多
Grain boundary diffusion process(GBDP)has been developed as an effective approach to increase the coercivity of sintered Nd-Fe-B magnets by regulating the compositions and phase distributions near grain boundaries.Thi...Grain boundary diffusion process(GBDP)has been developed as an effective approach to increase the coercivity of sintered Nd-Fe-B magnets by regulating the compositions and phase distributions near grain boundaries.This work aims to explore how to select the optimum annealing temperature after GBDP.In this work GBDP was performed on a sintered Nd-Fe-B magnet using Dy_(70)Cu_(30) alloy.After GBDP the low eutectic temperature of the grain boundary phases decreases from the initial 492 to 451℃.The magnetic property dependent on different annealing temperatures near the low eutectic temperature was studied.The magnetic properties,especially the squareness factor of demagnetization curve show a strong dependence on the annealing temperature.After GBDP the optimal magnetic properties can be obtained after annealing just above the low eutectic temperature of the grain boundary phases.The mechanism is discussed based on the microstructure analysis.展开更多
基金Project supported by the National Natural Science Foundation of China(51901087)China Postdoctoral Science Foundation(2021M701504)。
文摘A sintered Nd-Y-Fe-B magnet was designed and manufactured by the multi-main-phase process.Unevenly distributed Y in the magnet decreases the adverse magnetic weakening effect of Y on the coercivity.Grain boundary diffusion process(GBDP)was conducted to further enhance the coercivity of the Nd-Y-Fe-B magnet.The coercivity increases significantly from 884 to 1741 kA/m after GBDP with Pr_(60)Tb_(10)Cu_(30)alloy.The mechanism of the coercivity enhancement is discussed based on the microstructure analysis.Micromagnetic simulation reveals that when the diffused Tb-rich shell thickness is lower than 12 nm the c-plane shell(perpendicular to the c-axis)is much more effective in enhancing the coercivity than the side plane shell(parallel to the c-axis).But when the Tb-rich shell thickness is above12 nm the side plane shell contributes more to the coercivity enhancement.The results in this work can help to design and manufacture Nd-Fe-B magnets with low cost and high magnetic properties.
基金Project supported by the National Natural Science Foundation of China(51901087)Natural Science Foundation of Jiangsu Province(BK20190975,BK20201007)+1 种基金China Postdoctoral Science Foundation(2021M701504)Natural Science Foundation for Colleges and Universities in Jiangsu Province(20KJD470002)。
文摘Grain boundary diffusion process(GBDP)has been developed as an effective approach to increase the coercivity of sintered Nd-Fe-B magnets by regulating the compositions and phase distributions near grain boundaries.This work aims to explore how to select the optimum annealing temperature after GBDP.In this work GBDP was performed on a sintered Nd-Fe-B magnet using Dy_(70)Cu_(30) alloy.After GBDP the low eutectic temperature of the grain boundary phases decreases from the initial 492 to 451℃.The magnetic property dependent on different annealing temperatures near the low eutectic temperature was studied.The magnetic properties,especially the squareness factor of demagnetization curve show a strong dependence on the annealing temperature.After GBDP the optimal magnetic properties can be obtained after annealing just above the low eutectic temperature of the grain boundary phases.The mechanism is discussed based on the microstructure analysis.