期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
FCC coprocessing oil sands heavy gas oil and canola oil. 3. Some cracking characteristics 被引量:1
1
作者 Siauw H.Ng Nicole E.Heshka +2 位作者 Ying Zheng Qiang Wei fuchen ding 《Green Energy & Environment》 SCIE CSCD 2019年第1期83-91,共9页
Coprocessing of bitumen-derived feeds and biomass through a fluid catalytic cracking(FCC) route has the potential to assist in the reduction of fuel and petroleum product carbon footprints while meeting government reg... Coprocessing of bitumen-derived feeds and biomass through a fluid catalytic cracking(FCC) route has the potential to assist in the reduction of fuel and petroleum product carbon footprints while meeting government regulatory requirements on renewable transportation fuels. This approach is desirable because green house gas(GHG) emissions for producing renewable biofuels are significantly lower than those for fossil fuels, and coprocessing can be executed using existing refining infrastructure to save capital cost. The present study investigates the specific FCC performances of pure heavy gas oil(HGO) derived from oil sands synthetic crude, and a mixture of 15 v% canola oil in HGO using a commercial equilibrium catalyst under typical FCC conditions. Cracking experiments were performed using a bench-scale Advanced Cracking Evaluation(ACE) unit at fixed weight hourly space velocity(WHSV) of 8 h^(-1), 490–530℃, and catalyst/oil ratios of 4–12 g/g. This work focuses on some cracking phenomena resulting from the presence of oxygen in the blendda lower heat requirement for cracking due to the exothermic water formation, which also entails lower hydrogen yield at a given severity. The distribution of feed oxygen in gaseous and liquid products, the mitigation in GHG emissions, and the technological and economical advantages of the coprocessing option are also discussed. 展开更多
关键词 FCC coprocessing Microactivity test(MAT) unit Four-lump KINETIC model Heat of formation of water VAPOUR Carbon FOOTPRINT reduction
在线阅读 下载PDF
FCC coprocessing oil sands heavy gas oil and canola oil. 2. Gasoline hydrocarbon type analysis 被引量:1
2
作者 Siauw H.Ng Nicole E.Heshka +4 位作者 Cecile Lay Edward Little Ying Zheng Qiang Wei fuchen ding 《Green Energy & Environment》 SCIE 2018年第3期286-301,共16页
This study set out to gain a deeper understanding of a fluid catalytic cracking(FCC)coprocessing approach using canola oil mixed with bitumen-derived heavy gas oil(HGO),for the production of partially-renewable gasoli... This study set out to gain a deeper understanding of a fluid catalytic cracking(FCC)coprocessing approach using canola oil mixed with bitumen-derived heavy gas oil(HGO),for the production of partially-renewable gasoline,with respect to its composition and quality.The FCC coprocessing approach may provide an alternative solution to reducing the carbon footprint and to meet government regulatory demands for renewable transportation fuels.In this study,a mixture of 15 v%canola oil in HGO was catalytically cracked with a commercial equilibrium catalyst under typical FCC conditions.Cracking experiments were performed using a bench-scale Advanced Cracking Evaluation(ACE)unit at a fixed weight hourly space velocity of 8 h^(à1),490–530C,and catalyst/oil ratios of 4–12 g/g.The total liquid product samples were injected via an automatic sampler and a prefractionator(to removet254C)into a gas chromatographic system containing a series of columns,traps,and valves designed to separate each of the hydrocarbon types.The analyzer gives detailed hydrocarbon types of à200C gasoline,classified into paraffins,iso-paraffins,olefins,naphthenes,and aromatics by carbon number up to C_(11)(C_(10)for aromatics).For a feed cracked at a given temperature,the gasoline aromatics show the highest selectivity in terms of weight percent conversion,followed by saturated iso-paraffins,saturated naphthenes,unsaturated iso-paraffins,unsaturated naphthenes,unsaturated normal paraffins,and saturated normal paraffins.As conversion increases,both aromatics and saturated iso-paraffins increase monotonically at the expense of other components.Hydrocarbon type analysis and octane numbers with variation in feed type,process severity(temperature and catalyst/oil ratio),and conversion are also presented and discussed. 展开更多
关键词 Oil sands heavy gas oil(HGO) Canola oil Advanced Cracking Evaluation(ACE) unit PIONA analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部